

A Cluster-Theoretic Approach to Polynomial Equations (II)

Fang Li (Zhejiang University)
Joint work with 包雷振(Leizhen Bao)、潘炯铠(Jiongkai Pan)

International Conference of Hopf Alegbras
and Tensor Categories,
TSIMF, Sanya, Jan. 19, 2026

2002, Cluster algebra

Fomin and Zelevinsky abstracted out an algebraic structure.

A **seed** is a pair $\Omega := (\tilde{B}, \tilde{\mathbf{x}})$, where

- Exchange matrix $\tilde{B} = (b_{ij})$ is an $(n+m) \times n$ integer skew-symmetrizable matrix;
- The cluster $\tilde{\mathbf{x}} = \mathbf{x}_{ex} \cup \mathbf{x}_{fr}$ where the set of cluster variables $\mathbf{x}_{ex} = \{x_1, \dots, x_n\}$ and the set of frozen variables $\mathbf{x}_{fr} = \{x_{n+1}, \dots, x_{n+m}\}$.

The **mutation** of the seed Ω **at direction** $k \in [1, n]$ is defined to be the new seed

$$\mu_k(\tilde{B}, \tilde{\mathbf{x}}) := (\tilde{B}', \tilde{\mathbf{x}}')$$

given by

$$b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = k \text{ or } j = k \\ b_{ij} + \text{sgn}(b_{ik})[b_{ik}b_{kj}]_+ & \text{otherwise} \end{cases} \quad (1)$$

$$x'_i = \begin{cases} x_i & \text{if } i \neq k \\ \frac{P_k^+ \prod_{j \in \langle n \rangle} x_j^{[b_{jk}]_+} + P_k^- \prod_{j \in \langle n \rangle} x_j^{[-b_{jk}]_+}}{x_k} & \text{if } i = k \end{cases} \quad (2)$$

where P_k^+, P_k^- are monomials on \mathbf{x}_{fr} .

Then the **cluster algebra** $\mathcal{A}(\Omega)$ is the $R[\mathbf{x}_{fr}]$ -subalgebra of the rational function field \mathcal{F} over a commutative ring R generated by all cluster variables $\bigcup \mathbf{x}_{ex}$ of all seeds obtained from the initial seed by any finite steps of mutations.

The case $R = \mathbb{Z}$ gives the classical cluster theory,
write as a \mathbb{Z} -cluster algebra $\mathcal{A}(\Omega)_{\mathbb{Z}}$;

For case $R = F_q$ a finite field with $q = p^s$, we give the cluster theory over a finite field, write as a F_q -cluster algebra $\mathcal{A}(\Omega)_{F_q}$.

\mathbb{Z} -cluster algebras and F_q -cluster algebras

It is easy to see most of facts for F_q -cluster algebras are the same as for \mathbb{Z} -cluster algebras. For example,

Theorem 1 (Laurent phenomenon, (FZ, 2002; L-Pan, 2025))

Given a seed $\Omega := (\tilde{B}, \tilde{\mathbf{x}})$. Let $\mathbf{x}' := \mu_{s_m} \cdots \mu_{s_1}(\mathbf{x})$. Then for all $i \in [1, n]$, we have $x'_i \in R[\mathbf{x}^\pm]$ for either $R = \mathbb{Z}$ or $R = F_q$.

The positivity of cluster variables of cluster algebras holds only for \mathbb{Z} -cluster algebras, that is,

Theorem 2 (Positivity of cluster variables, (GHKK, 2018))

Given a seed $\Omega := (\tilde{B}, \tilde{\mathbf{x}})$. Let $\mathbf{x}' := \mu_{s_m} \cdots \mu_{s_1}(\mathbf{x})$. Then for all $i \in [1, n]$, we have $x'_i \in \mathbb{Z}_{\geq 0}[\mathbf{x}^\pm]$ in the \mathbb{Z} -cluster algebra $\mathcal{A}(\Omega)_{\mathbb{Z}}$.

Obviously, positivity of cluster variables is NOT necessary to be considered for the F_q -cluster algebra $\mathcal{A}(\Omega)_{F_q}$.

\mathbb{Z} -cluster algebras and F_q -cluster algebras

It is easy to see most of facts for F_q -cluster algebras are the same as for \mathbb{Z} -cluster algebras. For example,

Theorem 1 (Laurent phenomenon, (FZ, 2002; L-Pan, 2025))

Given a seed $\Omega := (\tilde{B}, \tilde{\mathbf{x}})$. Let $\mathbf{x}' := \mu_{s_m} \cdots \mu_{s_1}(\mathbf{x})$. Then for all $i \in [1, n]$, we have $x'_i \in R[\mathbf{x}^\pm]$ for either $R = \mathbb{Z}$ or $R = F_q$.

The positivity of cluster variables of cluster algebras holds only for \mathbb{Z} -cluster algebras, that is,

Theorem 2 (Positivity of cluster variables, (GHKK, 2018))

Given a seed $\Omega := (\tilde{B}, \tilde{\mathbf{x}})$. Let $\mathbf{x}' := \mu_{s_m} \cdots \mu_{s_1}(\mathbf{x})$. Then for all $i \in [1, n]$, we have $x'_i \in \mathbb{Z}_{\geq 0}[\mathbf{x}^\pm]$ in the \mathbb{Z} -cluster algebra $\mathcal{A}(\Omega)_{\mathbb{Z}}$.

Obviously, positivity of cluster variables is NOT necessary to be considered for the F_q -cluster algebra $\mathcal{A}(\Omega)_{F_q}$.

1880, Markov equation¹

- Diophantine equation

$$M(X, Y, Z) := X^2 + Y^2 + Z^2 - 3XYZ = 0.$$

- Transformations

$$m_1(X, Y, Z) := (3YZ - X, Y, Z),$$

$$m_2(X, Y, Z) := (X, 3XZ - Y, Z),$$

$$m_3(X, Y, Z) := (X, Y, 3XY - Z).$$

- Set of solutions

$$\langle m_1, m_2, m_3 \rangle (1, 1, 1) = \mathcal{V}_{\mathbb{Z}_{>0}}(M)$$

Note that $(1, 1, 1)$ is the trivial solution of $M(X, Y, Z)$.

¹A. Markoff. Sur les formes quadratiques binaires indéfinies.
Math. Ann., 17(3):379 – 399, 1880.

What is the relationship between cluster algebras and number theory?

- Given a cluster algebra $\mathcal{A}(B, (x_1, x_2, x_3))$ where

$$B := \begin{pmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{pmatrix}$$

- For $(x_0, y_0, z_0) \in \mathbb{Z}_{>0}^3$ a solution of Markov equation:

$$x^2 + y^2 + z^2 = 3xyz.$$

Then $\mu_i(x_0, y_0, z_0) = m_i(x_0, y_0, z_0)$ is also a solution for $i = 1, 2, 3$. For example,

$$\mu_1(x, y, z) = \left(\frac{y^2+z^2}{x}, y, z\right) = (3yz - x, y, z) = m_1(x, y, z)$$

- Due to the positivity of cluster variables in $\mathcal{A}(\Omega)_{\mathbb{Z}}$, we have

$$\mu_i(x_0, y_0, z_0) \in \mathbb{Z}_{>0}^3. \text{ It follows}$$

$$\langle \mu_1, \mu_2, \mu_3 \rangle (1, 1, 1) = \mathcal{V}_{\mathbb{Z}_{>0}}(M) \text{ the set of positivity solutions.}$$

What is the relationship between cluster algebras and number theory?

- Given a cluster algebra $\mathcal{A}(B, (x_1, x_2, x_3))$ where

$$B := \begin{pmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{pmatrix}$$

- For $(x_0, y_0, z_0) \in \mathbb{Z}_{>0}^3$ a solution of Markov equation:

$$x^2 + y^2 + z^2 = 3xyz.$$

Then $\mu_i(x_0, y_0, z_0) = m_i(x_0, y_0, z_0)$ is also a solution for $i = 1, 2, 3$. For example,

$$\mu_1(x, y, z) = \left(\frac{y^2+z^2}{x}, y, z\right) = (3yz - x, y, z) = m_1(x, y, z)$$

- Due to the positivity of cluster variables in $\mathcal{A}(\Omega)_{\mathbb{Z}}$, we have $\mu_i(x_0, y_0, z_0) \in \mathbb{Z}_{>0}^3$. It follows $\langle \mu_1, \mu_2, \mu_3 \rangle (1, 1, 1) = \mathcal{V}_{\mathbb{Z}_{>0}}(M)$ the set of positivity solutions.

What is the relationship between cluster algebras and number theory?

- Given a cluster algebra $\mathcal{A}(B, (x_1, x_2, x_3))$ where

$$B := \begin{pmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{pmatrix}$$

- For $(x_0, y_0, z_0) \in \mathbb{Z}_{>0}^3$ a solution of Markov equation:

$$x^2 + y^2 + z^2 = 3xyz.$$

Then $\mu_i(x_0, y_0, z_0) = m_i(x_0, y_0, z_0)$ is also a solution for $i = 1, 2, 3$. For example,

$$\mu_1(x, y, z) = \left(\frac{y^2+z^2}{x}, y, z\right) = (3yz - x, y, z) = m_1(x, y, z)$$

- Due to the positivity of cluster variables in $\mathcal{A}(\Omega)_{\mathbb{Z}}$, we have

$$\mu_i(x_0, y_0, z_0) \in \mathbb{Z}_{>0}^3. \text{ It follows}$$

$$\langle \mu_1, \mu_2, \mu_3 \rangle(1, 1, 1) = \mathcal{V}_{\mathbb{Z}_{>0}}(M) \text{ the set of positivity solutions.}$$

Some examples of Diophantine equations similarly using mutations from cluster theory

Markov

$$M(x_1, x_2, x_3) := x_1^2 + x_2^2 + x_3^2 - 3x_1x_2x_3 = 0$$

Hone & Swart

$$H(x_1, x_2, x_3, x_4) := x_1^2x_4^2 + x_1x_3^3 + x_2^3x_4 + x_2^2x_3^2 - 4x_1x_2x_3x_4 = 0$$

Lampe

$$L(x_1, x_2, x_3, x_4, x_5) :=$$

$$x_1x_2(x_3^2 + x_4^2 + x_5^2) + (x_1^2 + x_2^2 + x_3x_4)(x_3 + x_4)x_5 - 9x_1x_2x_3x_4 = 0$$

Gyoda & Matsushita

$$G(x_1, x_2, x_3) :=$$

$$x_1^2 + x_2^4 + x_3^4 + 2x_1x_2^2 + kx_2^2x_3^2 + 2x_1x_3^2 - (7 + k)x_1x_2^2x_3^2 = 0$$

What is their common characteristic? “Almost Symmetry”?

Def: 1-cluster symmetric map

- Given $\sigma \in \mathfrak{S}_n$, $s \in [1, n]$, an integer vector $\mathbf{b} \in \mathbb{Z}^n$ with $b_s = 0$, call (σ, s, \mathbf{b}) a **seedlet**.
- 1-cluster symmetric map of (σ, s, \mathbf{b})** is defined as

$$\psi_{\sigma, s, \mathbf{b}}(\mathbf{x}) :=$$

$$\left(x_{\sigma(1)}, \dots, x_{\sigma(t-1)}, \frac{\prod_{j \in [1, n]} x_j^{[b_j]_+} + \prod_{j \in [1, n]} x_j^{[-b_j]_+}}{x_s}, x_{\sigma(t+1)}, \dots, x_{\sigma(n)} \right),$$

where $t = \sigma^{-1}(s)$.

- Briefly,

$$\psi_{\sigma, s, \mathbf{b}}(\mathbf{x}) = \left(\sigma(\mathbf{x}) \right) \Big|_{\frac{\prod_{j \in [1, n]} x_j^{[b_j]_+} + \prod_{j \in [1, n]} x_j^{[-b_j]_+}}{x_s} \leftarrow x_s}.$$

- $\psi_{\sigma, s, \mathbf{b}} = \sigma \mu_s = \mu_{\sigma^{-1}(s)} \sigma$.

1-cluster symmetric group

Let $\Omega = (B, \mathbf{x})$ be a seed. For any permutation $\sigma \in \mathfrak{S}_n$.

The **permutation** σ of the seed Ω is defined to be the new seed $\sigma(B, \mathbf{x}) := (B', \mathbf{x}')$ given by

$$b'_{ij} = b_{\sigma(i)\sigma(j)}, \quad x'_i = x_{\sigma(i)}.$$

Proposition 3

(Bao-L.)

For a mutation μ_s , if $\sigma\mu_s(B, \mathbf{x}) = (\pm B, \mathbf{x}')$, then $\sigma\mu_s$, treating as transformation of variables, is the 1-cluster symmetric map of $(\sigma, s, \mathbf{b}_s)$, that is

$$\sigma\mu_s = \psi_{\sigma, s, \mathbf{b}_s}.$$

The 1-cluster symmetric group of the seed Ω defined as

$$\mathcal{G}_1(\Omega) := \langle \sigma\mu_s \mid \sigma\mu_s(B, \mathbf{x}) = (\pm B, \mathbf{x}'), \forall s \in [1, n], \sigma \in \mathfrak{S}_n \rangle$$

From given cluster algebra to find polynomials as invariants

How to characterize a **Laurent polynomial** which is invariant under a given 1-cluster symmetric map?

Theorem 4 (Bao-L.)

For $R = \mathbb{Z}$ or $= F_q$, given a 1-cluster symmetric map $\psi_{\sigma, s, \mathbf{b}}$. Let $F(\mathbf{x})$ be a Laurent polynomial in $R[\mathbf{x}^\pm]$ and its expression is

$$F(\mathbf{x}) = \mathbf{x}^{-\mathbf{d}} \sum_{\mathbf{j} \in \mathcal{N}} a_{\mathbf{j}} \mathbf{x}^{\mathbf{j}}.$$

with $\eta \in \mathbb{N}^n$, $\mathbf{d} \in \mathbb{Z}^n$, $\mathbf{d} = \sigma(\mathbf{d})$, $\eta_s = \eta_t = 2\mathbf{d}_s = 2\mathbf{d}_t$. (*)

Then the relation

$$F(\psi_{\sigma, s, \mathbf{b}}(\mathbf{x})) = F(\mathbf{x}) \quad (**)$$

holds, if and only if, the coefficients $\{a_{\mathbf{j}} \in R \mid \mathbf{j} \in \mathcal{N}\}$ satisfy the systems of homogeneous linear equations $HLE(\sigma, s, \mathbf{b}, \eta, \mathbf{d}, k)$ and $HLE(\sigma^{-1}, t, \mathbf{b}, \eta, \mathbf{d}, k)$.

$HLE(\sigma, s, \mathbf{b}, \eta, \mathbf{d}, k)$:

$$\begin{cases} 0 = a_{\sigma(\mathbf{j})} - \sum_{\substack{0 \leq l \leq k \\ \mathbf{j} - \mathbf{b}_{s,k,l}^{(2k)} \in \mathcal{N}}} a_{\mathbf{j} - \mathbf{b}_{s,k,l}^{(2k)}} C_k^l, & \text{if } \mathbf{j} \in A, \\ 0 = \sum_{\substack{0 \leq l \leq k \\ \mathbf{j} - \mathbf{b}_{s,k,l}^{(2k)} \in \mathcal{N}}} a_{\mathbf{j} - \mathbf{b}_{s,k,l}^{(2k)}} C_k^l, & \text{if } \mathbf{j} \in B, \\ 0 = a_{\sigma(\mathbf{j})}, & \text{if } \mathbf{j} \in C, \end{cases}$$

where $A = \pi_s^{(d_s - k)} \left(\sigma^{-1}(\mathcal{N}) \cap \bigcup_{0 \leq l \leq k} (\mathcal{N} + \mathbf{b}_{s,k,l}^{(2k)}) \right)$,

$B = \pi_s^{(d_s - k)} \left(\bigcup_{0 \leq l \leq k} (\mathcal{N} + \mathbf{b}_{s,k,l}^{(2k)}) \setminus \sigma^{-1}(\mathcal{N}) \right)$,

$C = \pi_s^{(d_s - k)} \left(\sigma^{-1}(\mathcal{N}) \setminus \bigcup_{0 \leq l \leq k} (\mathcal{N} + \mathbf{b}_{s,k,l}^{(2k)}) \right)$.

$HLE(\sigma^{-1}, t, \mathbf{b}, \eta, \mathbf{d}, k)$:

$$\begin{cases} 0 = a_{\sigma^{-1}(\mathbf{j})} - \sum_{\substack{0 \leq l \leq k \\ \mathbf{j} - \mathbf{v}_{t,k,l}^{(2k)} \in \mathcal{N}}} a_{\mathbf{j} - \mathbf{v}_{t,k,l}^{(2k)}} C_k^l, & \text{if } \mathbf{j} \in A', \\ 0 = \sum_{\substack{0 \leq l \leq k \\ \mathbf{j} - \mathbf{v}_{t,k,l}^{(2k)} \in \mathcal{N}}} a_{\mathbf{j} - \mathbf{v}_{t,k,l}^{(2k)}} C_k^l, & \text{if } \mathbf{j} \in B', \\ 0 = a_{\sigma^{-1}(\mathbf{j})}, & \text{if } \mathbf{j} \in C', \end{cases}$$

where $A' = \pi_t^{(d_t-k)} \left(\sigma(\mathcal{N}) \cap \bigcup_{0 \leq l \leq k} (\mathcal{N} + \mathbf{v}_{t,k,l}^{(2k)}) \right)$,

$B' = \pi_t^{(d_t-k)} \left(\bigcup_{0 \leq l \leq k} (\mathcal{N} + \mathbf{v}_{t,k,l}^{(2k)}) \setminus \sigma(\mathcal{N}) \right)$,

$C' = \pi_t^{(d_t-k)} \left(\sigma(\mathcal{N}) \setminus \bigcup_{0 \leq l \leq k} (\mathcal{N} + \mathbf{v}_{t,k,l}^{(2k)}) \right)$.

and where $\mathcal{N} := \{\mathbf{j} \in \mathbb{Z}_{\geq 0}^n \mid 0 \leq \pi_i(\mathbf{j}) \leq \pi_i(\eta), \forall i \in [1, n]\}$
and $\pi_s^{(k)}(\mathcal{N}) := \{\mathbf{j} \in \mathcal{N} \mid \pi_s(\mathbf{j}) = k\},$

$$\mathbf{b}_{s,k,l}^{(i)} := l[\mathbf{b}]_+ + (k - l)[- \mathbf{b}]_+ - i \mathbf{e}_s,$$

where for $k = 0$, we say $C_0^l = 1$.

Laurent polynomials from these equations

From Markov to build:

$$F_M(x_1, x_2, x_3) := \frac{x_1^2 + x_2^2 + x_3^2}{x_1 x_2 x_3} - 3$$

From Hone & Swart to build:

$$F_H(x_1, x_2, x_3, x_4) := \frac{x_1^2 x_4^2 + x_1 x_3^3 + x_2^3 x_4 + x_2^2 x_3^2}{x_1 x_2 x_3 x_4} - 4$$

From Lampe to build:

$$F_L(x_1, x_2, x_3, x_4, x_5) := \frac{x_1 x_2 (x_3^2 + x_4^2 + x_5^2) + (x_1^2 + x_2^2 + x_3 x_4)(x_3 + x_4)x_5}{x_1 x_2 x_3 x_4} - 9$$

From Gyoda & Matsushita to build:

$$F_G(x_1, x_2, x_3) := \frac{x_1^2 + x_2^4 + x_3^4 + 2x_1 x_2^2 + k x_2^2 x_3^2 + 2x_1 x_3^2}{x_1 x_2^2 x_3^2} - (7 + k)$$

The operation is:

- (1): Attempt to construct a Laurent polynomial from the original Diophantine equation such that the condition (*) holds,
- (2): Verify whether the equations $HLE(\sigma, s, \mathbf{b}, \eta, \mathbf{d}, k)$ and $HLE(\sigma^{-1}, t, \mathbf{b}, \eta, \mathbf{d}, k)$ hold,
- (3): If not, adjust the approach in (1) and re-check (2).

Invariant

Then, the Laurent polynomial is invariant under 1-cluster symmetric map, that is,

Markov:

$$F_M(\mu_i(x_1, x_2, x_3)) = F_M(x_1, x_2, x_3), \quad i = 1, 2, 3$$

Hone & Swart:

$$F_H(\sigma_{(1234)}\mu_1(x_1, x_2, x_3, x_4)) = F_H(x_1, x_2, x_3, x_4)$$

Lampe

$$F_L(\sigma_{(12)}\mu_1(x_1, x_2, x_3, x_4, x_5)) = F_L(x_1, x_2, x_3, x_4, x_5)$$

It follows that the positivity of cluster variables in \mathbb{Z} -cluster algebras is used in the operation from an initial solution $\mathbf{x}_0 \in \mathbb{N}^n$.

Laurent polynomial as invariant and the orbit of positive integer solutions

Proposition 5

(Bao-L.)

For a seed Ω of a \mathbb{Z} -cluster algebra $\mathcal{A}(\Omega)$, then $\mathcal{G}_1(\Omega)(\mathbf{1}) \subset \mathbb{Z}_{>0}^n$
Suppose $F(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}^\pm]^{\mathcal{G}_1(\Omega)}$. Then

$$\mathcal{G}_1(\Omega)(\mathbf{1}) \subset \mathcal{V}_{\mathbb{Z}_{>0}}(F(\mathbf{x}) - F(\mathbf{1})).$$

is an orbit.

Basic idea

Why do we need cluster algebras over finite fields?

As shown above, certain specific Diophantine equations are linked to \mathbb{Z} -cluster algebras, since the solutions of the former can be classified into orbits via mutation mappings of the latter.

In number theory, the local-global principle is important. For example, the relation between positive integer solutions of Diophantine equations and their solutions over finite fields.

Under this view, F_q -cluster algebras becomes necessary, since it allows us to connect the solutions of specific equations over finite fields with the mutation mappings of F_q -cluster algebras to obtain classification of orbits.

Then, we can establish a “global-local” relation between the orbit classification of solutions to Diophantine equations and that to the corresponding equations over finite fields.

A canonical map from \mathbb{Z} -equations to F_p -equations

For a prime p , we have the canonical map

$$\pi : \mathbb{Z} \rightarrow F_p = \mathbb{Z}/p\mathbb{Z}, \text{ via } z \mapsto \bar{z}.$$

So, for a given Diophantine equation satisfying 1-cluster symmetry: $f(\mathbf{x}) = \sum_{(i_1, i_2, \dots, i_n) \in \mathbb{N}^n} a_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} = 0$ where all $a_{i_1 i_2 \dots i_n} \in \mathbb{Z}$, with the 1-cluster symmetric group $\mathcal{G}_1(\Omega)$,

let $\mathcal{V}_{\mathbb{Z}_{>0}}$ be the set of positive integer solutions of $f(\mathbf{x}) = 0$.

Then the group $\mathcal{G}_1(\Omega)$ acts on $\mathcal{V}_{\mathbb{Z}_{>0}}$.

We have the corresponding polynomial equation over F_p satisfying 1-cluster symmetry:

$$\bar{f}(\mathbf{x}) = \sum_{(i_1, i_2, \dots, i_n) \in \mathbb{N}^n} \bar{a}_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} = 0$$

where all $\bar{a}_{i_1 i_2 \dots i_n} \in \mathbb{F}_p$, with the same 1-cluster symmetric group $\mathcal{G}_1(\Omega)$,

let \mathcal{V}_{F_p} be the set of solutions of $f(\mathbf{x}) = 0$ over F_p .

Then the group $\mathcal{G}_1(\Omega)$ acts on \mathcal{V}_{F_p} .

Pre-image of F_p -solution in $\mathcal{V}_{\mathbb{Z}_{>0}}$

From the canonical map: $\pi : \mathbb{Z} \rightarrow F_p = \mathbb{Z}/p\mathbb{Z}$, via $z \mapsto \bar{z}$.

We induce the map: $\hat{\pi} : \mathcal{V}_{\mathbb{Z}_{>0}} \rightarrow \mathcal{V}_{F_p}$, via $\mathbf{x}_0 \mapsto \hat{\mathbf{x}}_0$.

We give a characterization for $\hat{\pi}$ to be **surjective** as follows.

Proposition 6 (By Dekker for Markov equation)

Let p be prime. Then every solution to the Markoff equation over \mathbb{F}_p has some pre-image in \mathbb{N}^3 if and only if \mathcal{V}_{F_p} is a connected graph under action of 1-cluster symmetric group.

Proposition 7 (By L.-Pan for general equations)

Assume the set of positive integer solutions $\mathcal{V}_{\mathbb{Z}_{>0}}$ of a 1-cluster symmetric Diophantine equation $f(\mathbf{x}) = 0$ has **only one** orbit under the action of $\mathcal{G}_1(\Omega)$ (or say, is connected).

Then every solution of $\bar{f}(\mathbf{x}) = 0$ has some pre-image in $\mathcal{V}_{\mathbb{Z}_{>0}}$ if and only if the solution set \mathcal{V}_{F_p} of $\bar{f}(\mathbf{x}) = 0$ is connected.

Strong approximation conjecture by A. Baragar

Conjecture 1

For any prime p , the non-zero solutions set \mathcal{V}_{F_p} of Markov equation $x^2 + y^2 + z^2 = 3xyz$ over F_p is connected.

[1] P Sarnak, etc, C. R. Math. Acad. Sci. Paris 354(2) (2016).

By Prop.6, $\hat{\pi} : \mathcal{V}_{\mathbb{Z}_{>0}} \rightarrow \mathcal{V}_{F_p}$ is surjective if this conjecture holds.

The first major progress is the work in [2]:

[2] W Y. Chen, Ann. of Math. (2) 199 (2024), no. 1.

in which it was proved that the cardinality of a connected component of \mathcal{G}_p is divisible by p and in particular,

the conjecture holds for all but finitely many primes p .

Proposal: For finitely many primes p_0 which are not known if satisfying Conjecture 1, we may use Proposition 6, 7 to discuss if there is a pre-image in $\mathcal{V}_{\mathbb{Z}_{>0}}$ for any solution in $\mathcal{V}_{F_{p_0}}$.

Examples with unique orbit of solution set over $\mathbb{Z}_{>0}$

$$\Omega_1, \quad F_1 : \frac{x^2 + y^2 + z^2}{xyz}$$

$$\Omega_2, \quad F_2 : \frac{x^2 + y^2 + z^2 + k_1 yz + k_2 zx + k_3 xy}{xyz}$$

$$\Omega_3, \quad F_3 : \frac{x^2 + y^4 + z^4 + 2xy^2 + ky^2z^2 + 2xz^2}{xy^2z^2}$$

$$\Omega_4, \quad F_4 : \frac{x^2 + y^4 + z^4 + 2x(y^2 + z^2) + k_1 yz(x + y^2 + z^2) + k_2 y^2 z^2}{xy^2z^2}$$

Then, $\mathcal{G}_1(\Omega_i)(\mathbf{1}) = \mathcal{V}_{\mathbb{Z}_{>0}}(F_i(\mathbf{x}) - F_i(\mathbf{1}))$ for $i = 1, 2, 3, 4$.

where all Ω_i are the corresponding seeds from some cluster algebras.

In particular, the result on the equation F_4 is given by us.

Example for non-unique orbits by Lampe²

- Given a seed $\Omega := (B, \mathbf{x})$,

$$B := \begin{pmatrix} 0 & -2 & 1 & 1 & 0 \\ 2 & 0 & -1 & -1 & 0 \\ -1 & 1 & 0 & 1 & -1 \\ -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix}.$$

Example for non-unique orbits by Lampe²

- Given a seed $\Omega := (B, \mathbf{x})$,

$$B := \begin{pmatrix} 0 & -2 & 1 & 1 & 0 \\ 2 & 0 & -1 & -1 & 0 \\ -1 & 1 & 0 & 1 & -1 \\ -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix}.$$

- Clearly, $\sigma_{(12)}\mu_1, \sigma_{(1234)}\mu_4 \in \mathcal{G}_1(\Omega)$. Denote a group

$$G := \langle \sigma_{(12)}\mu_1, \sigma_{(1234)}\mu_4 \rangle.$$

Example for non-unique orbits by Lampe²

- Given a seed $\Omega := (B, \mathbf{x})$,

$$B := \begin{pmatrix} 0 & -2 & 1 & 1 & 0 \\ 2 & 0 & -1 & -1 & 0 \\ -1 & 1 & 0 & 1 & -1 \\ -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix}.$$

- Clearly, $\sigma_{(12)}\mu_1, \sigma_{(1234)}\mu_4 \in \mathcal{G}_1(\Omega)$. Denote a group

$$G := \langle \sigma_{(12)}\mu_1, \sigma_{(1234)}\mu_4 \rangle.$$

- Then $L(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}^\pm]^G$, where

$$L(\mathbf{x}) := \frac{x_1 x_2 (x_3^2 + x_4^2 + x_5^2) + (x_1^2 + x_2^2 + x_3 x_4)(x_3 + x_4)x_5}{x_1 x_2 x_3 x_4} - 9$$

- Fix $k \in \mathbb{Z}_{>0}$, then $L(k\mathbf{1}) = 0$ and $G(k\mathbf{1}) \subsetneq \mathcal{V}_{\mathbb{Z}_{>0}}(L)$.

Example for non-unique orbits by Lampe²

- Given a seed $\Omega := (B, \mathbf{x})$,

$$B := \begin{pmatrix} 0 & -2 & 1 & 1 & 0 \\ 2 & 0 & -1 & -1 & 0 \\ -1 & 1 & 0 & 1 & -1 \\ -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix}.$$

- Clearly, $\sigma_{(12)}\mu_1, \sigma_{(1234)}\mu_4 \in \mathcal{G}_1(\Omega)$. Denote a group

$$G := \langle \sigma_{(12)}\mu_1, \sigma_{(1234)}\mu_4 \rangle.$$

- Then $L(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}^\pm]^G$, where

$$L(\mathbf{x}) := \frac{x_1 x_2 (x_3^2 + x_4^2 + x_5^2) + (x_1^2 + x_2^2 + x_3 x_4)(x_3 + x_4)x_5}{x_1 x_2 x_3 x_4} - 9$$

- Fix $k \in \mathbb{Z}_{>0}$, then $L(k\mathbf{1}) = 0$ and $G(k\mathbf{1}) \subsetneq \mathcal{V}_{\mathbb{Z}_{>0}}(L)$.

Characterization for $G(k\mathbf{1})$

Theorem 8 (Bao-L.)

$$G(k\mathbf{1}) = \mathcal{V}_{\mathbb{Z}_{>0}}(L) \cap \{\mathbf{x}' \in \mathbb{Z}_{>0}^5 \mid \varphi(\mathbf{x}') \in \mathbb{Z}_{>0}^3, \mathbf{x}' \equiv 0 \pmod{k}\}.$$

where $\mathbf{x}' \equiv 0 \pmod{k}$ means $x_i \equiv 0 \pmod{k}$ for all $i \in [1, n]$ and
 $\varphi : (a, b, c, d, e) \mapsto$

$$\left(\frac{a^2 + b^2 + cd}{ab}, \frac{c^2d + a^2c + b^2d + abe}{bcd}, \frac{cd^2 + a^2c + b^2d + abe}{acd} \right)$$

[3] L. Bao & F. Li, A study on Diophantine equations via cluster theory, J. Algebra 639:99 – 119, 2024.

On the equation H : $x^2 + y^2 + 1 = 3xy$

- ♠ This equation is the special case of Markov equation for $z = 1$, that is, its solution graph can be embedded into the Markov graph.
- ♠ This equation is a 1-cluster symmetric equation with exchange matrix: $B = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$ and the mutations of the corresponding cluster algebra.
- ♠ The other meaning of this equation is that it can be written as a quadratic equation $x^2 + y^2 - 3xy = -1$, so it has rational solutions over \mathbb{Q} if and only if it has p -adic solutions over the p -adic field \mathbb{Q}_p by Hasse Theorem due to the local-global principle.

Connection of solutions of Equation H over $\mathbb{Z}_{>0}$

All $\mathbb{Z}_{>0}$ -solutions of Equation H can be obtained from initial solution $(1, 1)$ through finite many mutations μ_i defined satisfying:

$$\mu_1(x, y) = \left(\frac{y^2+1}{x}, y\right), \mu_2(x, y) = \left(x, \frac{x^2+1}{y}\right)$$

The 1-cluster symmetric group \mathcal{G}_1 is generated as $\langle \mu_1, \mu_2 \rangle$ with relations $\mu_1^2 = 1, \mu_2^2 = 1$.

Then the solution set $\mathcal{V}_{\mathbb{Z}_{>0}}(F)$ of Equation H is just the unique orbit under action of the group \mathcal{G}_1 , that is,

$$\mathcal{G}_1(1, 1) = \mathcal{V}_{\mathbb{Z}_{>0}}(F)$$

The solution set of Equation H over F_p

For the equation H over F_p , we can replace $\frac{y^2+1}{x}$, $\frac{x^2+1}{y}$ with $3y - x$, $3x - y$ respectively, then we have

$$\mu_1(x, y) = (3y - x, y), \mu_2(x, y) = (x, 3x - y) \quad (3)$$

such that we can perform mutation along some direction $k = 1, 2$ even if the coordinate of this direction of the solution over F_p are zero.

We call such solution an **ambiguous solution**.

Is the solution set of Equation H connected over F_p ?

We have known the solution set of Markov equation over F_p has been proved to be connected for all p but finitely many primes as the answer for Conjecture 1.

Now we consider the same problem for the equation H , that is,

Is the solution set of the equation H over F_p connected as graph under mutations?

The examples we will give below show for some p the solution set of H is connected and for other p that is not connected.

1-cluster symmetric group and orbit over F_5 (1)

Over F_5 , the solution set $\mathcal{V}_{F_5}(H)$ of $H : x^2 + y^2 + 1 = 3xy$ contains 10 various solutions:

$(1, 1), (1, 2), (2, 1), (0, 2), (0, 3), (2, 0), (3, 0), (4, 4), (4, 3), (3, 4),$

where $(0, 2), (2, 0), (3, 0), (0, 3)$ are ambiguous solutions.

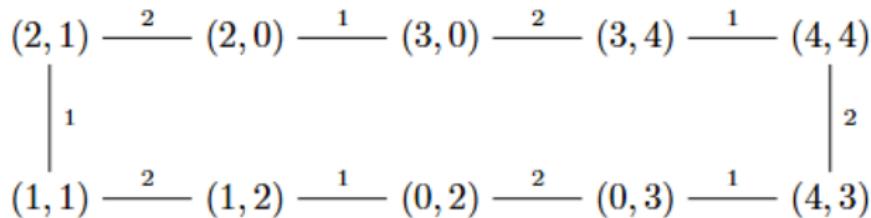
In this case we have the replacing mutations in (3), that is,

$$\mu_1(x, y) = (3y - x, y), \quad \mu_2(x, y) = (x, 3x - y)$$

1-cluster symmetric group and orbit over F_5 (2)

Under the action of the 1-cluster symmetric group

$\mathcal{G}_{F_5} = \langle \mu_1, \mu_2 \rangle$, the solution set $\mathcal{V}_{F_5}(H)$ of Equation H forms the following connected graph:



That is, the orbit is unique.

1-cluster symmetric group and orbit over F_5 (3)

In addition to the relations $\mu_1^2 = 1$ and $\mu_2^2 = 1$, the 1-cluster symmetric group \mathcal{G}_{F_5} also has the following new relations:

$$(\mu_1\mu_2)^5 = 1, \quad (\mu_2\mu_1)^5 = 1$$

Based on this, we obtain the following characterization:

Proposition 9

The 1-cluster symmetric group \mathcal{G}_{F_5} of the equation $H : x^2 + y^2 + 1 = 3xy$ over the field F_5 is isomorphic to the dihedral group D_5 .

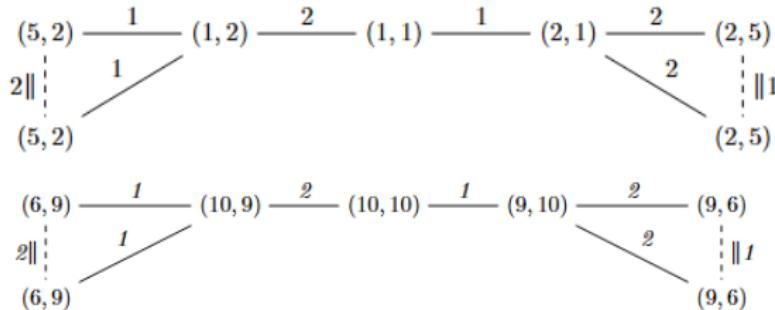
1-cluster symmetric group and orbit over F_{11} (1)

Over the finite field F_{11} , the solution set $\mathcal{V}_{F_{11}}(H)$ of the equation $x^2 + y^2 + 1 = 3xy$ consists of exactly 10 solutions:

$(1, 1), (1, 2), (2, 1), (5, 2), (2, 5), (10, 10), (10, 9), (9, 10), (9, 6), (6, 9)$

Under the action of the 1-cluster symmetric group

$\mathcal{G}_{F_{11}} = \langle \mu_1, \mu_2 \rangle$, the solution set $\mathcal{V}_{F_{11}}(H)$ of equation H forms the following two connected graphs:



That is, in this case, the solution set $\mathcal{V}_{F_{11}}(H)$ contains two orbits.

1-cluster symmetric group and orbit over F_{11} (2)

For each orbit, there is a new relation:

$$(\mu_2\mu_1)^5 = 1, \quad (\mu_1\mu_2)^5 = 1$$

Based on this, we obtain the following characterization:

Proposition 10

The 1-cluster symmetric group \mathcal{G}_{T_∇} of the equation $H : x^2 + y^2 + 1 = 3xy$ over the field \mathbb{F}_{11} is isomorphic to $D_5 \times D_5$.

A result on pre-images of orbits

Note that the solution set of Equation H has two orbits over \mathbb{F}_{11} , it is easy to see in the second orbit any solution has no preimage in \mathbb{N}^2 .

In fact, we have the following general result:

Theorem 0.0.1

For a 1-cluster symmetric F_p -polynomial $f(X) = 0$ for any prime p , all solutions in its one orbit of the solution set at the same time either have pre-images or have not pre-images in \mathbb{N}^n .

Thanks !