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2002, Cluster algebra

Fomin and Zelevinsky abstracted out an algebraic structure.

A seed is a pair Ω := (B̃, x̃), where
Exchange matrix B̃ =

(
bij
)

is an (n + m)× n integer
skew-symmetrizable matrix;
The cluster x̃ = xex ∪ xfr
where the set of cluster variables xex = {x1, . . . , xn} and
the set of frozen variables xfr = {xn+1, . . . , xn+m}.

The mutation of the seed Ω at direction k ∈ [1,n] is defined to
be the new seed

µk (B̃, x̃) := (B̃′, x̃′)

given by



beamer-tu-logo

b′ij =

{
−bij if i = k orj = k
bij + sgn(bik )[bikbkj ]+ otherwise

(1)

x ′i =


xi if i 6= k
P+

k
∏

j∈〈n〉
x

[bjk ]+

j +P−k
∏

j∈〈n〉
x

[−bjk ]+

j

xk
if i = k

(2)

where P+
k ,P

−
k are monomials on xfr .

Then the cluster algebra A(Ω) is the R[xfr ]-subalgebra of the
rational function field F over a commutative ring R generated
by all cluster variables

⋃
xex of all seeds obtained from the

initial seed by any finite steps of mutations.

The case R = Z gives the classical cluster theory,
write as a Z-cluster algebra A(Ω)Z;
For case R = Fq a finite field with q = ps, we give the cluster
theory over a finite field, write as a Fq-cluster algebra A(Ω)Fq .
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Z-cluster algebras and Fq-cluster algebras

It is easy to see most of facts for Fq-cluster algebras are the
same as for Z-cluster algebras. For example,

Theorem 1 (Laurent phenomenon, (FZ, 2002; L-Pan, 2025))

Given a seed Ω := (B̃, x̃). Let x′ := µsm · · ·µs1(x). Then for all
i ∈ [1,n], we have x ′i ∈ R[x±] for either R = Z or R = Fq.

The positivity of cluster variables of cluster algebras holds only
for Z-cluster algebras, that is,

Theorem 2 (Positivity of cluster variables, (GHKK, 2018))

Given a seed Ω := (B̃, x̃). Let x′ := µsm · · ·µs1(x). Then for all
i ∈ [1,n], we have x ′i ∈ Z≥0[x±] in the Z-cluster algebra A(Ω)Z.

Obviously, positivity of cluster variables is NOT necessary to be
considered for the Fq-cluster algebra A(Ω)Fq .
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1880, Markov equation1

• Diophantine equation
M(X ,Y ,Z ) := X 2 + Y 2 + Z 2 − 3XYZ = 0.

• Transformations

m1(X ,Y ,Z ) := (3YZ − X ,Y ,Z ),

m2(X ,Y ,Z ) := (X ,3XZ − Y ,Z ),

m3(X ,Y ,Z ) := (X ,Y ,3XY − Z ).

• Set of solutions

〈m1,m2,m3〉(1,1,1) = VZ>0(M)

Note that (1,1,1) is the trivial solution of M(X ,Y ,Z ).

1A. Markoff. Sur les formes quadratiques binaires indWfinies.
Math. Ann., 17(3):379õ399, 1880.
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What is the relationship between cluster algebras and
number theory?

Given a cluster algebra A(B, (x1, x2, x3)) where

B :=

 0 2 −2
−2 0 2

2 −2 0


For (x0, y0, z0) ∈ Z3

>0 a solution of Markov equation:
x2 + y2 + z2 = 3xyz.

Then µi(x0, y0, z0) = mi(x0, y0, z0) is also a solution for
i = 1,2,3. For example,
µ1(x , y , z) = (y2+z2

x , y , z) = (3yz − x , y , z) = m1(x , y , z)

Due to the positivity of cluster variables in A(Ω)Z, we have
µi(x0, y0, z0) ∈ Z3

>0. It follows
〈µ1, µ2, µ3〉(1,1,1) = VZ>0(M) the set of positivity solutions.
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Some examples of Diophantine equations similarly
using mutations from cluster theory

Markov
M(x1, x2, x3) := x2

1 + x2
2 + x2

3 − 3x1x2x3 = 0
Hone & Swart
H(x1, x2, x3, x4) := x2

1 x2
4 + x1x3

3 + x3
2 x4 + x2

2 x2
3 − 4x1x2x3x4 = 0

Lampe
L(x1, x2, x3, x4, x5) :=

x1x2(x2
3 + x2

4 + x2
5 ) + (x2

1 + x2
2 + x3x4)(x3 + x4)x5−9x1x2x3x4 = 0

Gyoda & Matsushita
G(x1, x2, x3) :=

x2
1 + x4

2 + x4
3 + 2x1x2

2 + kx2
2 x2

3 + 2x1x2
3 − (7 + k)x1x2

2 x2
3 = 0

What is their common characteristc? “Almost Symmetry”?
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Def: 1-cluster symmetric map

Given σ ∈ Sn, s ∈ [1,n], an integer vector b ∈ Zn with
bs = 0, call (σ, s,b) a seedlet.
1-cluster symmetric map of (σ, s,b) is defined as
ψσ,s,b(x) :=(

xσ(1), · · · , xσ(t−1),

∏
j∈[1,n]

x
[bj ]+

j +
∏

j∈[1,n]

x
[−bj ]+

j

xs
, xσ(t+1), · · · , xσ(n)

)
,

where t = σ−1(s).
Briefly,

ψσ,s,b(x) =

(
σ(x)

)∣∣∣∣ ∏
j∈[1,n]

x
[bj ]+
j +

∏
j∈[1,n]

x
[−bj ]+
j

xs
←xs

.

ψσ,s,b = σµs = µσ−1(s)σ.
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1-cluster symmetric group

Let Ω = (B,x) be a seed. For any permutation σ ∈ Sn.
The permutation σ of the seed Ω is defined to be the new seed
σ(B,x) := (B′,x′) given by

b′ij = bσ(i)σ(j), x ′i = xσ(i).

Proposition 3
(Bao-L.)
For a mutation µs§if σµs(B,x) = (±B,x′), then σµs, treating as
transformation of variables, is the 1-cluster symmetric map of
(σ, s,bs), that is

σµs = ψσ,s,bs .

The 1-cluster symmetric group of the seed Ω defined as
G1(Ω) := 〈σµs | σµs(B,x) = (±B,x′),∀s ∈ [1,n], σ ∈ Sn〉
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From given cluster algebra to find polynomials as
invariants

How to characterize a Laurent polynomial which is
invariant under a given 1-cluster symmetric map?

Theorem 4 (Bao-L.)
For R = Z or = Fq, given a 1-cluster symmetric map
ψσ,s,b. Let F (x) be a Laurent polynomial in R[x±] and its
expression is

F (x) = x−d∑
j∈N ajxj.

with η ∈ Nn,d ∈ Zn,d = σ(d), ηs = ηt = 2ds = 2dt. (*)
Then the relation

F (ψσ,s,b(x)) = F (x) (**)
holds, if and only if, the coefficients {aj ∈ R | j ∈ N}
satisfy the systems of homogeneous linear equations
HLE(σ, s,b, η,d, k) and HLE(σ−1, t ,b, η,d, k).
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HLE(σ, s,b, η,d, k):



0 = aσ(j) −
∑

0≤l≤k

j−b(2k)
s,k,l∈N

aj−b(2k)
s,k,l

C l
k , if j ∈ A,

0 =
∑

0≤l≤k

j−b(2k)
s,k,l∈N

aj−b(2k)
s,k,l

C l
k , if j ∈ B,

0 = aσ(j), if j ∈ C,

where A = π
(ds−k)
s

(
σ−1(N ) ∩

⋃
0≤l≤k (N + b(2k)

s,k ,l)

)
,

B = π
(ds−k)
s

(⋃
0≤l≤k (N + b(2k)

s,k ,l) \ σ
−1(N )

)
,

C = π
(ds−k)
s

(
σ−1(N ) \

⋃
0≤l≤k (N + b(2k)

s,k ,l)

)
.
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HLE(σ−1, t ,b, η,d, k):

0 = aσ−1(j) −
∑

0≤l≤k

j−v(2k)
t,k,l∈N

aj−v(2k)
t,k,l

C l
k , if j ∈ A′,

0 =
∑

0≤l≤k

j−v(2k)
t,k,l∈N

aj−v(2k)
t,k,l

C l
k , if j ∈ B′,

0 = aσ−1(j), if j ∈ C′,

where A′ = π
(dt−k)
t

(
σ(N ) ∩

⋃
0≤l≤k (N + v(2k)

t ,k ,l )

)
,

B′ = π
(dt−k)
t

(⋃
0≤l≤k (N + v(2k)

t ,k ,l ) \ σ(N )

)
,

C′ = π
(dt−k)
t

(
σ(N ) \

⋃
0≤l≤k (N + v(2k)

t ,k ,l )

)
.
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and where N := {j ∈ Zn
≥0 | 0 ≤ πi(j) ≤ πi(η),∀ i ∈ [1,n]}

and π(k)
s (N ) := {j ∈ N | πs(j) = k},

b(i)
s,k ,l := l[b]+ + (k − l)[−b]+ − ies,

where for k = 0, we say C l
0 = 1.
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Laurent polynomials from these equations

From Markov to build:
FM(x1, x2, x3) :=

x2
1 +x2

2 +x2
3

x1x2x3
− 3

From Hone & Swart to build:
FH(x1, x2, x3, x4) :=

x2
1 x2

4 +x1x3
3 +x3

2 x4+x2
2 x2

3
x1x2x3x4

− 4
From Lampe to build:

FL(x1, x2, x3, x4, x5) :=
x1x2(x2

3 +x2
4 +x2

5 )+(x2
1 +x2

2 +x3x4)(x3+x4)x5
x1x2x3x4

− 9
From Gyoda & Matsushita to build:

FG(x1, x2, x3) :=
x2

1 +x4
2 +x4

3 +2x1x2
2 +kx2

2 x2
3 +2x1x2

3
x1x2

2 x2
3

− (7 + k)

The operation is:
(1): Attempt to construct a Laurent polynomial from the original
Diophantine equation such that the condition (∗) holds,
(2): Verify whether the equations HLE(σ, s,b, η,d, k) and
HLE(σ−1, t ,b, η,d, k) hold,
(3): If not, adjust the approach in (1) and re-check (2).
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Invariant

Then, the Laurent polynomial is invariant under 1-cluster
symmetric map, that is,

Markov:
FM(µi(x1, x2, x3)) = FM(x1, x2, x3), i = 1,2,3

Hone & Swart:

FH(σ(1234)µ1(x1, x2, x3, x4)) = FH(x1, x2, x3, x4)

Lampe

FL(σ(12)µ1(x1, x2, x3, x4, x5)) = FL(x1, x2, x3, x4, x5)

It follows that the positivity of cluster variables in Z-cluster
algebras is used in the operation from an initial solution
x0 ∈ Nn.
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Laurent polynomial as invariant and the orbit of
positive integer solutions

Proposition 5
(Bao-L.)
For a seed Ω of a Z-cluster algebra A(Ω), then G1(Ω)(1) ⊂ Zn

>0
Suppose F (x) ∈ Q[x±]G1(Ω). Then

G1(Ω)(1) ⊂ VZ>0(F (x)− F (1)).
is an orbit.
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Basic idea

Why do we need cluster algebras over finite fields?

As shown above, certain specific Diophantine equations are
linked to Z-cluster algebras, since the solutions of the former
can be classified into orbits via mutation mappings of the latter.

In number theory, the local-global principle is important. For
example, the relation between positive integer solutions of
Diophantine equations and their solutions over finite fields.
Under this view, Fq-cluster algebras becomes necessary, since
it allows us to connect the solutions of specific equations over
finite fields with the mutation mappings of Fq-cluster algebras to
obtain classification of orbits.

Then, we can establish a “global-local” relation between the
orbit classification of solutions to Diophantine equations and
that to the corresponding equations over finite fields.
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A canonical map from Z-equations to Fp-equations

For a prime p, we have the canonical map
π : Z→ Fp = Z/pZ, via z 7→ z̄.

So, for a given Diophantine equation satisfying 1-cluster
symmetry: f (x) =

∑
(i1,i2,··· ,in)∈Nn ai1i2···inx i1

1 x i2
2 · · · x

in
n = 0

where all ai1i2···in ∈ Z, with the 1-cluster symmetric group G1(Ω),

let VZ>0 be the set of positive integer solutions of f (x) = 0.
Then the group G1(Ω) acts on VZ>0.

We have the corresponding polynomial equation over Fp
satisfying 1-cluster symmetry:

f̄ (x) =
∑

(i1,i2,··· ,in)∈Nn āi1i2···inx i1
1 x i2

2 · · · x
in
n = 0

where all āi1i2···in ∈ Fp, with the same 1-cluster symmetric group
G1(Ω),

let VFp be the set of solutions of f (x) = 0 over Fp.
Then the group G1(Ω) acts on VFp .
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Pre-image of Fp-solution in VZ>0

From the canonical map: π : Z→ Fp = Z/pZ, via z 7→ z̄.
We induce the map: π̂ : VZ>0 → VFp , via x0 7→ x̂0.
We give a characterization for π̂ to be surjective as follows.

Proposition 6 (By Dekker for Markov equation)

Let p be prime. Then every solution to the Markoff equation
over Fp has some pre-image in N3 if and only if VFp is a
connected graph under action of 1-cluster symmetric group.

Proposition 7 (By L.-Pan for general equations)

Assume the set of positive integer solutions VZ>0 of a 1-cluster
symmetric Diophantine equation f (x) = 0 has only one orbit
under the action of G1(Ω) (or say, is connected).
Then every solution of f̄ (x) = 0 has some pre-image in VZ>0 if
and only if the solution set VFp of f̄ (x) = 0 is connected.
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Strong approximation conjecture by A.Baragar

Conjecture 1

For any prime p, the non-zero solutions set VFp of Markov
equation x2 + y2 + z2 = 3xyz over Fp is connected.

[1] P Sarnak, etc, C. R. Math. Acad. Sci. Paris 354(2) (2016).

By Prop.6, π̂ : VZ>0 → VFp is surjective if this conjecture hold.
The first major progress is the work in [2]:
[2] W Y. Chen, Ann. of Math. (2) 199 (2024), no. 1.
in which it was proved that the cardinality of a connected
component of Gp is divisible by p and in particular,

the conjecture holds for all but finitely many primes p.
Pproposal: For finitely many primes p0 which are not been
known if satisfying Conjecture 1, we may use Proposition 6, 7 to
discuss if there is a pre-image in VZ>0 for any solution in VFp .
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Examples with unique orbit of solution set over Z>0

Ω1, F1 :
x2 + y2 + z2

xyz

Ω2, F2 :
x2 + y2 + z2 + k1yz + k2zx + k3xy

xyz

Ω3, F3 :
x2 + y4 + z4 + 2xy2 + ky2z2 + 2xz2

xy2z2

Ω4, F4 :
x2 + y4 + z4 + 2x(y2 + z2) + k1yz(x + y2 + z2) + k2y2z2

xy2z2

Then, G1(Ωi)(1) = VZ>0(Fi(x)− Fi(1)) for i = 1,2,3,4.
where all Ωi are the corresponding seeds from some cluster
algebras.

In particular, the result on the equation F4 is given by us.
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Example for non-unique orbits by Lampe2

Given a seed Ω := (B,x),

B :=


0 −2 1 1 0
2 0 −1 −1 0
−1 1 0 1 −1
−1 1 −1 0 1

0 0 1 −1 0

 .

Clearly, σ(12)µ1, σ(1234)µ4 ∈ G1(Ω) . Denote a group

G := 〈σ(12)µ1, σ(1234)µ4〉.

Then L(x) ∈ Q[x±]G, where

L(x) :=
x1x2(x2

3 + x2
4 + x2

5 ) + (x2
1 + x2

2 + x3x4)(x3 + x4)x5

x1x2x3x4
−9

Fix k ∈ Z>0, then L(k1) = 0 and G(k1)(VZ>0(L).
2P. Lampe. Diophantine equations via cluster transformations. JA (2016)
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Characterization for G(k1)

Theorem 8 (Bao-L.)

G(k1)=VZ>0(L) ∩ {x′ ∈ Z5
>0 | ϕ(x′) ∈ Z3

>0,x
′ ≡ 0(mod k)}.

where x′ ≡ 0(mod k) means xi ≡ 0(mod k) for all i ∈ [1,n] and
ϕ : (a,b, c,d ,e) 7→(

a2 + b2 + cd
ab

,
c2d + a2c + b2d + abe

bcd
,
cd2 + a2c + b2d + abe

acd

)
[3] L. Bao & F. Li, A study on Diophantine equations via cluster
theory, J. Algebra 639:99õ119, 2024.
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On the equation H : x2 + y2 + 1 = 3xy

♠ This equation is the special case of Markov equation for
z = 1, that is, its solution graph can be embedded into the
Markov graph.

♠ This equation is a 1-cluster symmetric equation with

exchange matrix: B =

(
0 2
−2 0

)
and the mutations of the

corresponding cluster algebra.

♠ The other meaning of this equation is that it can be written
as a quadratic equation x2 + y2 − 3xy = −1, so it has rational
solutions over Q if and only if it has p-adic solutions over the
p-adic field Qp by Hasse Theorem due to the local-global
principle.
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Connection of solutions of Equation H over Z>0

All Z>0-solutions of Equation H can be obtained from initial
solution (1,1) through finite many mutations µi defined
satisfying:

µ1(x , y) = ( y2+1
x , y), µ2(x , y) = (x , x2+1

y )

The 1-cluster symmetric group G1 is generated as 〈µ1, µ2〉 with
relations µ2

1 = 1, µ2
2 = 1.

Then the solution set VZ>0(F ) of Equation H is just the unique
orbit under action of the group G1, that is,

G1(1,1) = VZ>0(F )
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The solution set of Equation H over Fp

For the equation H over Fp, we can replace y2+1
x , x2+1

y with
3y − x , 3x − y respectively, then we have

µ1(x , y) = (3y − x , y), µ2(x , y) = (x ,3x − y) (3)

such that we can perform mutation along some direction
k = 1,2 even if the coordinate of this direction of the solution
over Fp are zero.

We call such solution an ambiguous solution.
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Is the solution set of Equation H connected over Fp?

We have known the solution set of Markov equation over Fp
has been proved to be connected for all p but finitely many
primes as the answer for Conjecture 1.

Now we consider the same problem for the equation H, that is,

Is the solution set of the equation H over Fp connected as
graph under mutations?

The examples we will give below show for some p the solution
set of H is connected and for other p that is not connected.
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1-cluster symmetric group and orbit over F5 (1)

Over F5§the solution set VF5(H) of H : x2 + y2 + 1 = 3xy
contains 10 various solutions:

(1,1), (1,2), (2,1), (0,2), (0,3), (2,0), (3,0), (4,4), (4,3), (3,4)§

where (0,2), (2,0), (3,0), (0,3) are ambiguous solutions.

In this case we have the replacing mutations in (3), that is,

µ1(x , y) = (3y − x , y), µ2(x , y) = (x ,3x − y)
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1-cluster symmetric group and orbit over F5 (2)

Under the action of the 1-cluster symmetric group
GF5 = 〈µ1, µ2〉, the solution set VF5(H) of Equation H forms the
following connected graph:

That is, the orbit is unique.
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1-cluster symmetric group and orbit over F5 (3)

In addition to the relations µ2
1 = 1 and µ2

2 = 1, the 1-cluster
symmetric group GF5 also has the following new relations:

(µ1µ2)5 = 1, (µ2µ1)5 = 1

Based on this, we obtain the following characterization:

Proposition 9
The 1-cluster symmetric group GF5 of the equation
H : x2 + y2 + 1 = 3xy over the field F5 is isomorphic to the
dihedral group D5.
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1-cluster symmetric group and orbit over F11 (1)

Over the finite field F11, the solution set VF11(H) of the equation
x2 + y2 + 1 = 3xy consists of exactly 10 solutions:

(1,1), (1,2), (2,1), (5,2), (2,5), (10,10), (10,9), (9,10), (9,6), (6,9)

Under the action of the 1-cluster symmetric group
GF11 = 〈µ1, µ2〉, the solution set VF11(H) of equation H forms the
following two connected graphs:

That is, in this case, the solution set VF11(H) contains two orbits.



beamer-tu-logo

1-cluster symmetric group and orbit over F11 (2)

For each orbit, there is a new relation:

(µ2µ1)5 = 1, (µ1µ2)5 = 1

Based on this, we obtain the following characterization:

Proposition 10
The 1-cluster symmetric group GTO of the equation
H : x2 + y2 + 1 = 3xy over the field F11 is isomorphic to
D5 × D5.
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A result on pre-images of orbits

Note that the solution set of Equation H has two orbits over F11,
it is easy to see in the second orbit any solution has no
preimage in N2.

In fact, we have the following general result:

Theorem 0.0.1
For a 1-cluster symmetric Fp-polynomial f (X ) = 0 for any prime
p, all solutions in its one orbit of the solution set at the same
time either have pre-images or have not pre-images in Nn.
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Thanks�


