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2002, Cluster algebra

Fomin and Zelevinsky abstracted out an algebraic structure.

A seed is a pair Q := (B, X), where
@ Exchange matrix B = (by) is an (n+ m) x ninteger
skew-symmetrizable matrix;

@ The cluster X = Xgy U Xy,
where the set of cluster variables xgx = {x1,...,Xx,} and
the set of frozen variables x¢ = {Xn41,. .., Xntm}-

The mutation of the seed Q at direction k < [1, n] is defined to

be the new seed B o
uk(B,X) := (B, x')

given by



b;j:{_bij ifi=korj=k

_ 1
bjj + sgn(bi)[bikbyj]+  otherwise W
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where P,j, P, are monomials on X.

Then the cluster algebra .A(Q2) is the R[x;]-subalgebra of the
rational function field F over a commutative ring R generated
by all cluster variables | ] xex of all seeds obtained from the
initial seed by any finite steps of mutations.

The case R = Z gives the classical cluster theory,

write as a Z-cluster algebra A(Q)z;

For case R = F; a finite field with g = p®, we give the cluster
theory over a finite field, write as a Fq-cluster algebra A(Q)g, .



Z-~cluster algebras and Fg-cluster algebras

It is easy to see most of facts for Fq-cluster algebras are the
same as for Z-cluster algebras. For example,

Theorem 1 (Laurent phenomenon, (FZ, 2002; L-Pan, 2025))

Given a seed Q := (B, X). Let X' := s, - - - s, (X). Then for all
i € [1,n], we have x! € R[x*] for either R =Z or R = Fy.

The positivity of cluster variables of cluster algebras holds only
for Z-cluster algebras, that is,

Obviously, positivity of cluster variables is NOT necessary to be
considered for the Fg-cluster algebra A(Q)f, .



Z-~cluster algebras and Fg-cluster algebras

It is easy to see most of facts for Fq-cluster algebras are the
same as for Z-cluster algebras. For example,

Theorem 1 (Laurent phenomenon, (FZ, 2002; L-Pan, 2025))

Given a seed Q := (B, X). Let X' := s, - - - s, (X). Then for all
i € [1,n], we have x! € R[x*] for either R =Z or R = Fy.

The positivity of cluster variables of cluster algebras holds only
for Z-cluster algebras, that is,

Theorem 2 (Positivity of cluster variables, (GHKK, 2018))

Given a seed Q2 := (B,X). LetX' := ps,, - - - us,(X). Then for all
i € [1,n], we have x! € Z>o[x*] in the Z-cluster algebra A(Q)z.

Obviously, positivity of cluster variables is NOT necessary to be
considered for the Fy-cluster algebra A(Q)f, .



1880, Markov equation’

e Diophantine equation
M(X,Y,Z):=X?+Y2+2% -3XYZ=0.
¢ Transformations

m(X,Y,Z) = (BYZ-X,Y,2),
my(X.Y,Z) = (X,3XZ-Y,2),
my(X.Y,2Z) = (X,Y,3XY - 2).

e Set of solutions
<m1 ) m27 m3>(1 ) 1? 1) = VZ>0(M)

Note that (1,1, 1) is the trivial solution of M(X, Y, Z).

TA. Markoff. Sur les formes quadratiques binaires ind ¢ finies.
Math. Ann., 17(3):379 - 399, 1880.



What is the relationship between cluster algebras and
number theory?

@ Given a cluster algebra A(B, (x1, X2, X3)) where

0 2 -2
B=| -2 0 2
2 -2 0



What is the relationship between cluster algebras and
number theory?

@ Given a cluster algebra A(B, (x1, X2, X3)) where

0 2 -2
B=| -2 0 2
2 -2 0

e For (xo, Yo, 20) € Z2 , a solution of Markov equation:
X2+ y? + 2% = 3xyz.
Then /L,’(Xo, Yo, Zo) = m,'(Xo, Yo, Zo) is also a solution for
i=1,2,3. For example,
2 2
M1(X7yaz) = (y —:Z 7.yaz) = (3}/2— Xa.yvz) = m1(X1yvz)




What is the relationship between cluster algebras and
number theory?

@ Given a cluster algebra A(B, (x1, X2, X3)) where

0 2 -2
B=| -2 0 2
2 -2 0

e For (xo, Yo, 20) € Z2 , a solution of Markov equation:
x? 4 y? 4+ 72 = 3xyz.
Then /L,’(Xo, Yo, Zo) = m,'(Xo, Yo, Zo) is also a solution for
i=1,2,3. For example,
pwi(x,y,2) = (yzjzz,y, z)=Byz—x,y,z) = m(x,y,2)
@ Due to the positivity of cluster variables in .A(Q2)z, we have

HI(X07y07 Zo) S Zio. It follows
(p1, p2, p3)(1,1,1) = Vz_ (M) the set of positivity solutions.




Some examples of Diophantine equations similarly
using mutations from cluster theory

Markov
M(x1, X2, X3) == X2 + X2 + X5 — 3X1XoX3 = 0
Hone & Swart
H(X1, X2, X3, Xa) = X2XZ + X1 X3 + X5Xa + X5X2 — 4X1 XpX3Xs = 0
Lampe
L(x1, X2, X3, X4, X5) :=

X1 Xo(X5 4 X2 + X&) + (X2 + x& + x3X4)(X3 + X4)X5—9xX1 XoX3Xg = O
Gyoda & Matsushita
G(X1 , X2, X3) =

X2+ Xy + X5 + 2X1X5 + kx5x5 + 2x1%5 — (7 + K)X1x5x5 = 0

What is their common characteristc? “Almost Symmetry”?



Def: 1-cluster symmetric map

@ Given o € &, s € [1, n], an integer vector b € Z" with
bs =0, call (¢, s,b) a seedlet.

@ 1-cluster symmetric map of (o, s,b) is defined as

¢a,s,b(x) =

(bjl--

'Ell:lnlxl +‘el[:In1 !
<X0(1)7"' 7XU(t—1)>j : X{s : ,XU(H_-]),"' 7X0'(n)>a
where t = o7 1(s).
@ Briefly,

—_b;
XA

e, g e
jelin 1 e !
Xs

nsn() = (00

—Xs

@ Ygsb = Ols = [lo—1(s5)0-



1-cluster symmetric group

Let @ = (B, x) be a seed. For any permutation o € &,.
The permutation o of the seed Q is defined to be the new seed
o(B,x) := (B',x’) given by

by = bo(ioi)s X = Xo(i)-

Proposition 3
(Bao-L.)
For a mutation ps, if ous(B,X) = (£B,X'), then ous, treating as

transformation of variables, is the 1-cluster symmetric map of
(0,8,bs), that is

Ols = wo’,s,bs .

The 1-cluster symmetric group of the seed ) defined as
G1(Q) := (ous | ops(B,x) = (£B,X'),Vs € [1,n],0 € Sp)




From given cluster algebra to find polynomials as
invariants

How to characterize a Laurent polynomial which is
invariant under a given 1-cluster symmetric map?

Theorem 4 (Bao-L.)

For R = Z or = Fq, given a 1-cluster symmetric map
Vs.sp- Let F(X) be a Laurent polynomial in R[x*] and its

expression is
F(x) = x93 axl.

withn e N".d € Z".d = o(d),ns = ;m = 2ds = 2d;. (%)
Then the relation

F(trsn(X)) = F(X)  (*)
holds, if and only if, the coefficients {g; € R | j € N}
satisfy the systems of homogeneous linear equations
HLE(o,s,b,n,d, k) and HLE(c~",t,b,n,d, k).




HLE(o, s,b,n,d, k):

l i w
0= as(j) — Z ai_b(zﬁ)l Ck, if j € A,
0<I<k S5

i—be en

0= Z ai_b(zk) C,l(, ifj € B,
0</<k s,k,l

i—be N
0= as(j)s If] € C,

where A = ngs_k) <U N) N Uo<i<k NV + bs K /)>
B=nl " <UOSl§k(N + b(ssz,)/) \o! (N))’

C= ngs k)< ( ) \U0</<k(N + bszll:/)>



HLE(s—",t,b,n,d, k):

— / s /
0= 30—1“) - Z ai*VSZ:)/ Ck> ifje A,
0<I<k Y
kvf,f,),ej\/'
0= > & @Gk ifje B,
0<I<k Y
kvﬁi?,e\/’
L 0= 3071(1), |f] S C/,

where A’ = 7{@~#) (U(/\/ ) OV Uge/ck N + vﬁ"}))
B = (@ H ( Uocrc + 2N\ (N)) ,
¢/ = aldk ( M)\ UpereeV + v&ik,))



and where N := {j € Z2 | 0 < mi(j) < mi(n),V i € [1,n]}
and 7$ (W) == {j € V| 7s(j) = K},

by}, := I[bl; + (k — )[-b]. — ies,

where for k = 0, we say C} = 1.



Laurent polynomials from these equations

From Markov to build:
Fu(x1, X2, X3) =
From Hone & Swart to build:
Fr(X1, X2, X3, Xa) :=
From Lampe to build:

20421 42
X{+HX+Xxs 3
X1 X2X3

242 3 43 242
XpXg X X3 X3 Xa x5 x5 4
X1 XoX3X4

X1 X (XX +X5)+ (X2 X +X3Xa) (Xa+Xa)Xs 9
X1 X2 X3 X4

FL(x1, X2, X3, X4, X5) :=
From Gyoda & Matsushita to build:
X2 X3+ Xg+2X1 X2+ KX X2 +2X1 X2 . (7 n k)

X1 X2x2

Fa(x1, X2, X3) :=
The operation is:
(1): Attempt to construct a Laurent polynomial from the original
Diophantine equation such that the condition (x) holds,
(2): Verify whether the equations HLE (o, s,b,n,d, k) and
HLE(o—",t,b,n,d, k) hold,
(3): If not, adjust the approach in (1) and re-check (2).



Invariant

Then, the Laurent polynomial is invariant under 1-cluster
symmetric map, that is,

Markov:

FM(,u,'(X1,X2,X3)) = F/\//(X1,X2,X3)7 i = 1,2,3
Hone & Swart:

Fr(o(1234)11 (X1, X2, X3, Xa)) = Fr(X1, X2, X3, X4)
Lampe
Fr(o@aym1 (X1, X, X3, Xa, X5)) = FL(X1, Xo, X3, Xa, X5)

It follows that the positivity of cluster variables in Z-cluster
algebras is used in the operation from an initial solution
Xo € N,



Laurent polynomial as invariant and the orbit of
positive integer solutions

Proposition 5
(Bao-L.)
For a seed ) of a Z-cluster algebra A(2), then G1(Q)(1) C ZZ,
Suppose F(x) € Q[x*]9 €Y. Then
G1(2)(1) € Va.,(F(x) = F(1)).
is an orbit.




Basic idea

Why do we need cluster algebras over finite fields?

As shown above, certain specific Diophantine equations are
linked to Z-cluster algebras, since the solutions of the former
can be classified into orbits via mutation mappings of the latter.

In number theory, the local-global principle is important. For
example, the relation between positive integer solutions of
Diophantine equations and their solutions over finite fields.
Under this view, F4-cluster algebras becomes necessary, since
it allows us to connect the solutions of specific equations over
finite fields with the mutation mappings of Fg-cluster algebras to
obtain classification of orbits.

Then, we can establish a “global-local” relation between the
orbit classification of solutions to Diophantine equations and
that to the corresponding equations over finite fields.



A canonical map from Z-equations to Fp-equations

For a prime p, we have the canonical map
m:L— Fp=7/pZ,viazw— Z.

So, for a given Diophantine equation satisfying 1-cluster
symmetry: f(X) = 32, i, . inenn @i Xy X5 - X5 =
where all a;,;,...;,, € Z, with the 1-cluster symmetric group G1(Q2),

let V7~ be the set of positive integer solutions of f(x) =
Then the group G1(Q2) acts on V0.

We have the corresponding polynomial equation over Fp
satisfying 1-cluster symmetry: '

f(X) - Z(/17/27 -+ in)ENT a’1 I+ lnX1 X2 Xllvn =
where all &;,,...;, € Fp, with the same 1 cluster symmetric group
G1(Q),

let Vg, be the set of solutions of f(x) = 0 over Fp.
Then the group G1(Q2) acts on Vg,.



Pre-image of Fp-solution in V-

From the canonical map: 7 :Z — Fp =7Z/pZ, via z — Z.
We induce the map: T Vzs0 — VF,, Via Xo — Xo.
We give a characterization for 7 to be surjective as follows.

Proposition 6 (By Dekker for Markov equation)

Let p be prime. Then every solution to the Markoff equation
overIF, has some pre-image in N8 f and only if VE, is a
connected graph under action of 1-cluster symmetric group.

Proposition 7 (By L.-Pan for general equations)

Assume the set of positive integer solutions V-~ of a 1-cluster
symmetric Diophantine equation f(x) = 0 has only one orbit
under the action of G1(S2) (or say, is connected).

Then every solution of f(x) = 0 has some pre-image in V-~ if
and onlv if the solution set V= of f(x) = 0 is connected.




Strong approximation conjecture by A.Baragar

For any prime p, the non-zero solutions set Vg, of Markov
equation x? + y? + z? = 3xyz over F, is connected.

[1] P Sarnak, etc, C. R. Math. Acad. Sci. Paris 354(2) (2016).

By Prop.6, 7 : Vz~0 — VF, is surjective if this conjecture hold.
The first major progress is the work in [2]:
[2] W Y. Chen, Ann. of Math. (2) 199 (2024), no. 1.

in which it was proved that the cardinality of a connected
component of G, is divisible by p and in particular,

the conjecture holds for all but finitely many primes p.
Pproposal: For finitely many primes py which are not been
known if satisfying Conjecture 1, we may use Proposition 6, 7 to
discuss if there is a pre-image in Vyz~q for any solution in Ve .



Examples with unique orbit of solution set over Z-

2.2, 52
. F.XTVEz
Xyz
X2+ y2 + 22 + K1 yz + kozx + kgxy
Qo, Fo:
Xyz
X% 4 y* 4+ 2% + 2xy? + ky?z? + 2x2°
Qs, Fs: 55
xy2z
9 L X2+ y* + 2%+ 2x(y? + 22) + kyz(x + y? + 22) + koy? 22
4, 4

Xy2z2
Then, | G1(Q2)(1) = Vz_,(Fi(x) — Fi(1)) |fori =1,2,3,4.

where all Q; are the corresponding seeds from some cluster
algebras.

In particular, the result on the equation Fy4 is given by us.



Example for non-unique orbits by Lampe?

@ Given a seed Q := (B, Xx),

0 -2 1 1 0

2 0 -1 -1 0

B=| -1 1 0 1 —1
-1 1 -1 0 1

0 0 1 -1 0

2P. Lampe. Diophantine equations via cluster transfermations.=JA (2016)



Example for non-unique orbits by Lampe?

@ Given a seed Q := (B, Xx),

0 -2 1 1 0

2 0 -1 -1 0

B=| -1 1 0 1 —1
-1 1 -1 0 1

0 0 1 -1 0

@ Clearly, o(12)111,0(1234) 114 € G1(£2) . Denote a group

G := (0(12)111, 0 (1234)114)-

2P. Lampe. Diophantine equations via cluster transformations.=JA (2016)



Example for non-unique orbits by Lampe?

@ Given a seed Q := (B, Xx),

0 -2 1 1 0

2 0 -1 -1 0

B=| -1 1 0 1 —1
-1 1 -1 0 1

0 0 1 -1 0

@ Clearly, o(12)111,0(1234) 114 € G1(£2) . Denote a group
G = (o(12)111, O (1234) H4) -
@ Then L(x) € Q[x*]%, where

L(x) = 1 Xo(X5 + x5 +XE) + (0§ + X5 + X3Xq) (X3 + Xa)Xs g
' X1X2X3X4

2P. Lampe. Diophantine equations via cluster transformations.=JA (2016)



Example for non-unique orbits by Lampe?

@ Given a seed Q := (B, Xx),

0 -2 1 1 0

2 0 -1 -1 0

B=| -1 1 0 1 —1
-1 1 -1 0 1

0 0 1 -1 0

@ Clearly, o(12)111,0(1234) 114 € G1(£2) . Denote a group
G := (0(12)111, 0 (1234)114)-
@ Then L(x) € Q[x*]%, where
Lx) = X1 X2 (X2 + X2 + x2) + (X2 + X2 + X3X4)(X3 + X4)X5 9
o X1X2X3X4
@ Fixk € Z-g,then L(k1) =0and  G(k1)CVz_,(L).
2P. Lampe. Diophantine equations via cluster transformations.=JA (2016)




Characterization for G(k1)

Theorem 8 (Bao-L.)

G(k1)=V;_(L)N{X' € Z2 | p(X') € Z2 5, X' = O(mod k)}.

where X’ = 0(mod k) means x; = 0(mod k) for all i € [1, n] and
v:(ab,cd e)—

a2+ b?+cd c2d+ ac+ b?d + abe cd? + a&c + b?d + abe
ab ’ bed ’ acd

[3] L. Bao & F. Li, A study on Diophantine equations via cluster
theory, J. Algebra 639:99 - 119, 2024.



On the equation H: x> + y? +1 = 3xy

& This equation is the special case of Markov equation for
z = 1, that is, its solution graph can be embedded into the
Markov graph.

& This equation is a 1-cluster symmetric equation with

_02 5 > and the mutations of the

corresponding cluster algebra.

exchange matrix: B =

& The other meaning of this equation is that it can be written
as a quadratic equation x? + y® — 3xy = —1, so it has rational
solutions over Q if and only if it has p-adic solutions over the
p-adic field Q, by Hasse Theorem due to the local-global
principle.



Connection of solutions of Equation H over Z-

All Z.o-solutions of Equation H can be obtained from initial
solution (1, 1) through finite many mutations p; defined
satisfying:

m (%, y) = (ZEy), wa(x.y) = (x, 51

The 1-cluster symmetric group G, is generated as (u1, u2) with
relations p% = 1, u3 = 1.

Then the solution set V- o(F) of Equation H is just the unique
orbit under action of the group Gy, that is,

g1(1,1) = Vz=o(F)



The solution set of Equation H over F,

For the equation H over Fp, we can replace sz“, "ZT“ with
3y — x, 3x — y respectively, then we have

u1(x,y):(3y—x,y), /1'2(X7y):(x73X_y) (3)

such that we can perform mutation along some direction
k = 1,2 even if the coordinate of this direction of the solution
over Fp, are zero.

We call such solution an ambiguous solution.



Is the solution set of Equation H connected over F,?

We have known the solution set of Markov equation over Fp
has been proved to be connected for all p but finitely many
primes as the answer for Conjecture 1.

Now we consider the same problem for the equation H, that is,

Is the solution set of the equation H over F, connected as
graph under mutations?

The examples we will give below show for some p the solution
set of H is connected and for other p that is not connected.



1-cluster symmetric group and orbit over F5 (1)

Over Fs, the solution set Vg (H) of H: x% + y? +1 = 3xy
contains 10 various solutions:

(1,1),(1,2),(2,1),(0,2),(0,3),(2,0), (3,0), (4, 4), (4, 3), (3,4),
where (0, 2),(2,0),(3,0), (0, 3) are ambiguous solutions.

In this case we have the replacing mutations in (3), that is,

p(x,y) =@y —x,¥), pa2(x,y)=(x,3x = y)



1-cluster symmetric group and orbit over F5 (2)

Under the action of the 1-cluster symmetric group
Grs = (111, o), the solution set Vi, (H) of Equation H forms the

following connected graph:

(2,1) —— (2,0) —— (3,0) —— (3,4) —— (4,4)

1 2

2 1

(1,1) (1,2) —— (0,2) —— (0,3)

(4.3)

That is, the orbit is unique.



1-cluster symmetric group and orbit over F5 (3)

In addition to the relations ;2 = 1 and p3 = 1, the 1-cluster
symmetric group Gr, also has the following new relations:

(mp2)® =1, (p2m)® =1

Based on this, we obtain the following characterization:

Proposition 9

The 1-cluster symmetric group Gr, of the equation
H: x? + y? + 1 = 3xy over the field Fs is isomorphic to the
dihedral group Ds.




1-cluster symmetric group and orbit over Fq1 (1)

Over the finite field IF41, the solution set Vr,, (H) of the equation
x? + y? +1 = 3xy consists of exactly 10 solutions:

(1,1),(1,2),(2,1),(5,2),(2,5),(10,10),(10,9),(9,10),(9,6),(6,9)

Under the action of the 1-cluster symmetric group
Gr,, = (111, 2), the solution set Vy,, (H) of equation H forms the
following two connected graphs:

(5,2) —— (1,2) —2— (1,1) —— (2,1)) —2— (2,5)
2l N
(5,2) (2,5)
(6,9) ———— (10,9) —2— (10, 10) —— (9, 10) —Z— (9,6)
A / S
(6,9) (9,6)

That is, in this case, the solution set V,, (H) contains two orbits.



1-cluster symmetric group and orbit over F11 (2)

For each orbit, there is a new relation:

(2m)® =1, (u1p2)® =1

Based on this, we obtain the following characterization:

Proposition 10

The 1-cluster symmetric group G, of the equation
H: x? + y? +1 = 3xy over the field F11 is isomorphic to
D5 X D5.




A result on pre-images of orbits

Note that the solution set of Equation H has two orbits over F44,
it is easy to see in the second orbit any solution has no
preimage in N2

In fact, we have the following general result:

Theorem 0.0.1

For a 1-cluster symmetric Fp-polynomial f(X) = 0 for any prime
p, all solutions in its one orbit of the solution set at the same
time either have pre-images or have not pre-images in N".




Thanks!



