

Derived representation schemes and derived Schur algebras

Farkhod Eshmatov

New Uzbekistan University
f.eshmatov@newuu.uz

Joint work with Xiaojun Chen

January 23, 2026

Representation functor

Let k be an algebraically closed field.

Let Alg_k be the category of associative k -algebras.

Let CAlg_k be the category of associative and commutative k -algebras.

For $A \in \text{Alg}_k$ and $n \in \mathbb{N}$, consider

$$\text{Rep}_n(A) : \text{CAlg}_k \rightarrow \text{Sets}, B \mapsto \text{Hom}_{\text{Alg}}(A, M_n(B)). \quad (1)$$

Theorem (Bergman - Cohn, 1974)

The functor $\text{Rep}_n(A)$ is representable by $A_n \in \text{CAlg}_k$

$$\text{Hom}_{\text{CAlg}}(A_n, B) \cong \text{Hom}_{\text{Alg}}(A, M_n(B))$$

If we take $B = k$, then

$$\mathrm{Spec}(A_n) := \mathrm{Hom}_{\mathrm{CAlg}}(A_n, k) \cong \mathrm{Hom}_{\mathrm{Alg}}(A, M_n(k)).$$

So the algebra A_n is the coordinate ring of the variety of n -dimensional representations of A .

Idea of Bergman-Cohn's theorem :

They considered the functor

$$\widetilde{\mathrm{Rep}}_n(A) : \mathrm{Alg}_k \rightarrow \mathrm{Sets}, B \mapsto \mathrm{Hom}_{\mathrm{Alg}}(A, M_n(B)). \quad (2)$$

and showed it is representable by $\sqrt[n]{A} \in \mathrm{Alg}_k$

$$\mathrm{Hom}_{\mathrm{Alg}}(A, M_n(B)) \simeq \mathrm{Hom}_{\mathrm{Alg}}(\sqrt[n]{A}, B).$$

Then $A_n = (\sqrt[n]{A})_{ab}$ (algebra abelianization).

Lemma

For an associative algebra A ,

$$\sqrt[n]{A} = (M_n(k) * A)^{M_n(k)}$$

where the RHS is the centralizer of the image of $M_n(k)$ in $M_n(k) * A$.

Thus, $\sqrt[n]{A}$ is generated by elements

$$a_{ij} := \sum_{m=1}^n e_{mi}ae_{jm},$$

where $a \in A$ and e_{ij} are the elementary matrices in $M_n(k)$.

Example

Let $A = \mathbb{C}\langle x, y \rangle$. Then $\sqrt[n]{A}$ is generated by x_{ij} and y_{ij} ($i, j = 1, \dots, n$). In fact,

$$\sqrt[n]{A} = \mathbb{C}\langle x_{ij}, y_{ij} \rangle \quad \text{and} \quad A_n = \mathbb{C}[x_{ij}, y_{ij}].$$

From representability of functors $\text{Rep}_n(A)$ and $\widetilde{\text{Rep}}_n(A)$, we obtain adjoint pairs of functors

$$\begin{aligned}\sqrt[n]{-} : \text{Alg}_k &\leftrightarrows \text{Alg}_k : M_n(-) \\ (-)_n : \text{Alg}_k &\leftrightarrows \text{CAlg}_k : M_n(-).\end{aligned}$$

Remark

If the category Alg_k were abelian or exact category, one could ask whether functors $\sqrt[n]{-}$ and $(-)_n$ are exact, and if not, what their left derived functors would be.

Y.Berest, G.Khachatryan, and A.Ramadoss, *Derived representation schemes and cyclic homology*, **Adv. Math.** 245 (2013) 625-689

Derived Representation scheme $DRep_n(A)$

We have defined the functor

$$Rep_n : Alg_k \rightarrow CAlg_k, \quad A \mapsto A_n$$

How do we find/define $DRep_n(A)$?

Consider categories: $(DGA_k/CDGA_k)$.

- ① $Alg_k \hookrightarrow DGA_k$ and $CAlg_k \hookrightarrow CDGA_k$
- ② Rep_n should be extended to a functor $DGA_k \rightarrow CDGA_k$
- ③ $DRep_n$ should be a functor $Ho(DGA_k) \rightarrow Ho(CDGA_k)$
- ④ Then $DRep_n(A)$ can be defined by composition $Alg_k \rightarrow Ho(CDGA_k)$

Theorem (Berest-Khachatryan-Ramadoss, 2013)

For $A \in \text{DGA}_k$, $\text{Rep}_n(A) : \text{CDGA}_k \rightarrow \text{Sets}$ is representable.

(a) $\text{Hom}_{\text{DGA}_k}(\sqrt[n]{A}, B) \simeq \text{Hom}_{\text{DGA}_k}(A, M_n(B))$

(b) $\text{Hom}_{\text{CDGA}_k}(A_n, C) \simeq \text{Hom}_{\text{DGA}_k}(A, M_n(C))$

$$\sqrt[n]{-} : \text{DGA}_k \leftrightarrows \text{DGA}_k : M_n(-)$$

$$(-)_n : \text{DGA}_k \leftrightarrows \text{CDGA}_k : M_n(-)$$

Remark

The functors $\sqrt[n]{-}$ and $(-)_n$ admit right adjoint functor $M_n(-)$. We will define their left derived functors, denoted $L(\sqrt[n]{-})$ and $L(-)_n$, in the homotopy categories $\text{Ho}(\text{DGA}_k)$ and $\text{Ho}(\text{CDGA}_k)$, respectively.

Theorem (Quillen, 1967)

$\text{DGA}_k, \text{CDGA}_k$ are *model categories*.

We recall that a *model category* is a complete and cocomplete category \mathcal{C} equipped with three distinguished classes of morphisms: weak equivalences (we), fibrations (fib) and cofibrations (cof) satisfying some natural axioms.

Examples

1. Let $\mathcal{C} = \mathbf{Top}$ be the category of topological spaces.
 - (a) $f \in \text{we}$ iff $f_* : \pi_n(X, x) \rightarrow \pi_n(Y, f(x))$ is an isomorphism for $n \geq 0$.
 - (b) $f \in \text{fib}$ iff f is a Serre fibration .
 - (c) $f \in \text{cof}$ iff f is a “nice embedding”

Examples

2. Let $\mathcal{C} = \mathbf{Com}(R)$ be the category of chain complexes over a ring R .

- (a) $\text{we} :=$ Quasi-isomorphisms (maps inducing isomorphisms on homology).
- (b) $\text{fib} :=$ Degreewise surjections ($f_n : C_n \rightarrow D_n$ is surjective for all n).
- (c) $\text{cof} :=$ Degreewise injections with projective cokernels.

One can similarly define the model category category structure on DGA_k and CDGA_k .

Definition

For a model category \mathcal{C} , the *homotopy category* $\text{Ho}(\mathcal{C})$ is a category with the same objects as \mathcal{C} , and for two objects X, Y

$$\text{Hom}_{\text{Ho}(\mathcal{C})}(X, Y) := \text{Hom}_{\mathcal{C}}(QX, QY)/\text{we},$$

where QX, QY are cofibrant (quasi-free) resolutions of X, Y respectively.

Examples

1. $\text{Ho}(\mathbf{Top}) \simeq$ classical homotopy category of CW complexes.
2. $\text{Ho}(\mathbf{Ch}(R)) \simeq \mathbf{D}(R)$ the usual unbounded derived category.

Now are ready to formulate the main definition of BKR (2013).

Definition

$$\begin{aligned} L(-)_n : \text{Ho}(\text{DGA}_k) &\rightarrow \text{Ho}(\text{CDGA}_k), \\ L(A)_n &:= (QA)_n, \end{aligned}$$

where, QA is a (cofibrant) resolution of A , is called *derived representation functor* and $L(A)_n$ *derived representation scheme* .

The homology of the complex $L(A)_n$ is denoted by $H_*(DRep_n(A))$ and is called *derived representation homology of A* .

Example (Computation of $L(A)_n$)

Let $A = \mathbb{C}[x, y]$.

1. Then $QA = \mathbb{C}\langle u, v, w \rangle$ is a free DG algebra on three generators where $\deg(u) = \deg(v) = 0, \deg(w) = 1$ and $dw = uv - vu$.

$$QA \rightarrow A, u \mapsto x, v \mapsto y, w \mapsto 0$$

this induces $H_\bullet(QA) \cong A$.

2. Let u_{ij}, v_{ij} be variables of $\deg=0$, and variables w_{ij} of $\deg=1$. Then

$$\sqrt[n]{QA} = \mathbb{C}\langle u_{ij}, v_{ij}, w_{ij} \rangle \text{ with } \partial(w_{ij}) = (dw)_{ij} = \sum_{k=1}^n (u_{ik}v_{kj} - v_{ik}u_{kj})$$

$$L(A)_n = QA_n = (\sqrt[n]{QA})_{ab} = \mathbb{C}[u_{ij}, v_{ij}, w_{ij}]$$

GL_n action on $\mathrm{Rep}_n(A)$

Let $B \in \mathrm{CDGA}_k$ and $\mathrm{Rep}_n(A)(B) = \mathrm{Hom}_{\mathrm{DGA}}(A, M_n(B))$

$$\begin{aligned} \mathrm{GL}_n \times \mathrm{Rep}_n(A)(B) &\rightarrow \mathrm{Rep}_n(A)(B) \\ (g, \rho) &\mapsto \rho^g, \quad \rho^g(a) = g\rho(a)g^{-1} \end{aligned}$$

BKR showed that the functor of taking GL_n invariants

$$(-)_n^{\mathrm{GL}_n} : \mathrm{DGA}_k \xrightarrow{(-)_n} \mathrm{CDGA}_k \xrightarrow{(-)^{\mathrm{GL}_n}} \mathrm{CDGA}_k$$

has the left derived functor

$$L(-)_n^{\mathrm{GL}_n} : \mathrm{Ho}(\mathrm{DGA}_k) \rightarrow \mathrm{Ho}(\mathrm{CDGA}_k), \quad L(A)_n^{\mathrm{GL}_n} := (QA)_n^{\mathrm{GL}_n}$$

BKR showed that $H_*((QA)_n^{\mathrm{GL}_n}) \cong H_*(DRep_n(A))^{\mathrm{GL}_n}$.

Example

Let $A = \mathbb{C}[x, y]$. Then recall from above

$$QA_n = \mathbb{C}[x_{ij}, y_{ij}, w_{ij}], \quad dw_{ij} = \dots$$

The GL_n action is defined via the action on the matrices $X = (x_{ij})$, $Y = (y_{ij})$ and $W = (w_{ij})$ by conjugation. Then

$$L(A)_n^{GL_n} = \mathbb{C}[x_{ij}, y_{ij}, w_{ij}]^{GL_n}.$$

Remark

The description of $L(A)_n^{GL_n}$ is quite complicated. For example, $L(\mathbb{C}[x, y])_4^{GL_4}$ is a quotient of polynomial algebra on 32 generators and 120 relations (X. García-Martínez- E.- R. Turdibaev, Adv. Math. 2025)

Cyclic homology

Let $A \in \text{DGA}_k$. The commutator quotient space

$$A_{\natural} = \frac{A}{[A, A]}$$

where $[A, A]$ is the super-commutator subspace. Then, we get a functor

$$(-)_{\natural} : \text{DGA}_k \rightarrow \text{Com}(k), \quad A \mapsto A_{\natural}.$$

Theorem (Feigin-Tsygan)

The functor $(-)_\natural$ has a derived functor.

$$\begin{aligned} L(-)_\natural : \text{Ho}(\text{DGA}_k) &\rightarrow \text{Ho}(\text{Com}_k) \\ A &\mapsto (QA)_\natural. \end{aligned}$$

Moreover, for $\forall A \in \text{Ho}(\text{DGA}_k)$, $\boxed{L(A)_\natural \simeq \text{CC}_\bullet(A)}$. This implies

$$\boxed{H_*(L(A)_\natural) \simeq HC_\bullet(A)}.$$

Universal representation

In (b), If we take $C = A_n$, then

$$\mathrm{Hom}_{\mathrm{CDGA}_k}(A_n, A_n) \simeq \mathrm{Hom}_{\mathrm{DGA}_k}(A, M_n(A_n)).$$

The *universal representation* is the one corresponding to 1_{A_n} :

$$\pi_A : A \rightarrow M_n(A_n).$$

If $\rho \in \mathrm{Hom}_{\mathrm{DGA}_k}(A, M_n(C))$, then \exists unique $\bar{\rho} \in \mathrm{Hom}_{\mathrm{CDGA}_k}(A_n, C)$,

$M_n(\bar{\rho}) : M_n(A_n) \rightarrow M_n(C)$ so that

$$\begin{array}{ccc} A & \xrightarrow{\pi} & M_n(A_n) \\ & \searrow \rho & \downarrow M_n(\bar{\rho}) \\ & & M_n(C). \end{array}$$

Derived trace

Consider $A \xrightarrow{\pi_A} M_n(A_n) \xrightarrow{\text{Tr}} A_n$ which vanishes on $[A, A]$

$$\text{Tr} : A_{\natural} \rightarrow A_n$$

Theorem (BKR)

For $A \in \text{DGA}_k$, the trace map Tr descends to a map of chain complexes

$$\text{DTr} : L(A)_{\natural} \rightarrow L(A)_n \text{ derived trace}$$

and it induces

$$\boxed{\text{DTr} : HC_*(A) \rightarrow H_*(DRep_n(A))} .$$

Remark

In fact, we have $\text{DTr} : L(A)_{\natural} \rightarrow L(A)_n^{\text{GL}_n}$ or

$$\text{DTr} : HC_*(A) \rightarrow H_*(DRep_n(A))^{\text{GL}_n} .$$

Problems

- (a) $\text{DRep}_n(A)$ can be written explicitly, but $\text{DRep}_n(A)^{\text{GL}_n}$ is quite complicated.
- (b) DTr is a chain map, and hence "linear". Is there any "nonlinear" generalization of this map?

A: Derived multiplicative polynomial laws.

Multiplicative polynomial laws

Let R be a commutative k -algebra. Let $\text{Mod}(R)$ be the category of R -modules.

Definition

Let $M, N \in \text{Mod}(R)$. A *polynomial law* $\phi : M \rightarrow N$ is a family of maps

$\{\phi_A : A \otimes_R M \rightarrow A \otimes_R N\}_{A \in \text{CAlg}_k}$, such that for all $f \in \text{Hom}_{\text{CAlg}}(A, B)$

$$\begin{array}{ccc} A \otimes_R M & \xrightarrow{\phi_A} & A \otimes_R N \\ f \otimes Id_M \downarrow & & \downarrow f \otimes Id_N \\ B \otimes_R M & \xrightarrow{\phi_B} & B \otimes_R N \end{array}$$

A polynomial law $\phi : M \rightarrow N$ is called *homogeneous of degree n* if

$$\phi(au) = a^n \phi(u), \text{ for all } a \in A, u \in A \otimes_R M, A \in \text{CAlg}_k.$$

We denote by $\text{P}^n(M, N)$ the set of all polynomial laws of degree n .

If M and N are k -algebras and

$$\begin{aligned}\phi_A(xy) &= \phi_A(x)\phi_A(y) \\ \phi_A(1_{A \otimes M}) &= 1_{A \otimes N}.\end{aligned}$$

for all $x, y \in A \otimes_k M$, then ϕ is called *multiplicative*.

We denote by $\text{MP}_R^n(M, N)$ the set of all multiplicative maps of degree n .

Examples

1. $\text{MP}_R^1(A, B) = \text{Hom}_{\text{Alg}_k}(A, B)$.
2. $B \in \text{CAlg}_k$, $\det : M_n(B) \rightarrow B$ is an element of $\text{MP}_R^n(M_n(B), B)$.
3. If $B \in \text{CAlg}_k$, then $b \mapsto b^n$ is an element of $\text{MP}_R^n(B, B)$.

Divided power algebra (DPA)

Let M be an R -module. Then the **divided power algebra** of M , $\Gamma_R(M)$,

is a commutative algebra with identity 1_R and product \times , and generators

$m^{(k)}$ for all $m \in M, k \in \mathbb{Z}$, and the following relations are satisfied:

- (1) $m^{(1)} = 0$, for all $i < 0$
- (2) $m^{(0)} = 1_R$, for all $m \in M$
- (3) $(am)^{(i)} = a^i m^{(i)}$, for all $a \in R, i \in \mathbb{N}$
- (4) $(m + n)^{(k)} = \sum_{i+j=k} m^{(i)} \times n^{(j)}$, for all $k \in \mathbb{N}$
- (5) $(m)^{(i)} \times (m)^{(j)} = \binom{i+j}{i} m^{(i+j)}$, for all $i, j \in \mathbb{N}$.

We write $a_1^{(i_1)} \times \cdots \times a_r^{(i_r)}$ in the form $\prod_{j=1}^r a_j^{(i_j)}$. As an R -module $\Gamma_R(M)$ is the R -linear combination of finite products $\prod_{j=1}^r a_j^{(i_j)}$.

$\Gamma_R^n(M) :=$ the submodule generated by $\{\prod_{j=1}^n a_j^{(i_j)} : \sum_{j=1}^r i_j = n\}$

Let $f : M \rightarrow N$ be R -module homomorphism. Then we define

$$\Gamma^n(f) : \Gamma^n(M) \rightarrow \Gamma^n(N)$$

$$\prod_{j=1}^n a_j^{(i_j)} \mapsto \prod_{j=1}^n (a_j)^{(i_j)}.$$

So $\Gamma^n : \text{Mod}(R) \rightarrow \text{Alg}_R$ is a functor.

Fact. The map

$$\gamma^n : M \rightarrow \Gamma_R^n(m), \quad r \mapsto r^{(n)}$$

is a polynomial law of homogeneous of degree n .

Theorem (Roby, 1963)

$\text{Hom}_{\text{Mod}(R)}(\Gamma_R^n(M), N) \simeq \text{P}_R^n(M, N)$ given by $\phi \mapsto \phi \circ \gamma^n$.

So $\Gamma_R^n(M)$ is representing object of $\text{P}_R^n(M, -)$ functor.

Theorem (Roby, 1980)

If A is an R -algebra.

(i) $\Gamma_R^n(A)$ has a structure of an R -algebra whose product is denoted by $*$ and is given by

$$a^{(n)} * b^{(n)} = (ab)^{(n)} \quad \text{for all } a, b \in A.$$

So, we have a functor

$$\Gamma_R^n(-) : \text{Alg}_R \rightarrow \text{Alg}_R.$$

(ii) For any $A, B \in \text{Alg}_R$, $\boxed{\text{MP}_R^n(A, B) \simeq \text{Hom}_{\text{Alg}_R}(\Gamma_R^n(A), B)}$.

(iii) If $C \in \text{CAlg}_R$, then $\boxed{\text{MP}_R^n(A, C) \simeq \text{Hom}_{\text{Alg}_R}(\Gamma_R^n(A)^{ab}, C)}$.

Corollary

For $A \in \text{Alg}_R$, $\Gamma_R^n(A)$ and $\Gamma_R^n(A)^{ab}$ are the representing objects of $\text{MP}_R^n(A, -)$ in the categories Alg and CAlg_R respectively.

Derived divided power algebras

Let R be a commutative ring, let DGA_R and CDGA_R be the categories of DG R -algebras, and DG commutative R -algebras, respectively.

Let M be R DG-module with differential ∂ of degree $= -1$. Then the *divided power algebra* of M , denoted by $\Gamma_R(M)$ is a DG commutative R -algebra with conditions (1)-(5) above and

$$(6) \quad \partial(m^{(i)}) = (\partial m)^{(1)} \times m^{(i-1)}, \text{ for all } i \in \mathbb{N}.$$

Lemma

Let $A \in \text{DGA}_k$. Then $(\Gamma_R^n(A), *, d)$ is a DG R -algebra.

Theorem

Let $A, B \in \text{DGA}_R$ and $C \in \text{CDGA}_R$. Then

- (1) $\text{DGMP}_R^n(A, B) \simeq \text{Hom}_{\text{DGA}_R}(\Gamma_R^n(A), B)$
- (2) $\text{DGMP}_R^n(A, C) \simeq \text{Hom}_{\text{CDGA}_R}(\Gamma_R^n(A)^{ab}, C)$

The functor

$$\begin{aligned}\Gamma_R^\bullet(-) : \text{DGMod}_R &\rightarrow \text{DGMod}_R \\ M &\mapsto \Gamma_R^n(M)\end{aligned}$$

defined by Dold-Puppe in 1958.

In 1967, Quillen showed $\Gamma_R^\bullet(-)$ has the left derived functor.

Theorem (Chen-E., 2025)

The functor

$$\Gamma_k^n : \text{DGA}_k \rightarrow \text{DGA}_k, \quad A \mapsto \Gamma_k^n(A)$$

has a left derived functor

$$\begin{aligned}D\Gamma_k^n : \text{Ho}(\text{DGA}_k) &\rightarrow \text{Ho}(\text{DGA}_k) \\ A &\mapsto \Gamma_k^n(QA)\end{aligned}$$

where QA is a cofibrant resolution of A .

Definition

For any $A \in \text{DGA}_k$, $\text{D}\Gamma_k^n(A)$ is called the *derived Schur algebra*.

For $A \in \text{DGA}_k$, we define

$$\text{Sym}^n(A) := (A^{\otimes n})^{S_n}$$

n-th tensor symmetric algebra. Then the map

$$\Gamma^n(A) \rightarrow \text{Sym}^n(A), x^{(n)} \mapsto \frac{x^n}{n!}$$

is an isomorphism of k -algebras when $\text{char}(k) = 0$.

In invariant theory, the algebra $\text{Sym}^n(A)$ for $A = \text{End}_k(V)$ is called *Schur algebra*. In that case

$$\text{Sym}^n(A) \cong \text{End}_{S_n}(V^{\otimes n}).$$

Derived divided power and derived representations

Let $A \in \mathrm{DGA}_R$, $B \in \mathrm{CDGA}_k$, and $\rho \in \mathrm{Hom}_{\mathrm{DGA}_k}(A, M_n(B))$. Then

$$\det \circ \rho \in \mathrm{MP}_R^n(A, B).$$

Since $\mathrm{MP}_R^n(A, B) \simeq \mathrm{Hom}_{\mathrm{CDGA}_R}(\Gamma_R^n(A)^{ab}, B)$, there is a unique map $\det_\rho : \Gamma_R^n(A)^{ab} \rightarrow B$,

$$\det \circ \rho = \det_\rho \circ \gamma^n.$$

In particular, for $\pi_A : A \rightarrow M_n(A_n)$

$$\underline{\det} := \det_{\pi_A} : \Gamma_R^n(A)^{ab} \rightarrow A_n.$$

Since \det is invariant under GL_n action, we get a map

$$\underline{\underline{\det}} : \Gamma_R^n(A)^{ab} \rightarrow A_n^{\mathrm{GL}_n}.$$

Theorem (Chen-E, 2025)

For any $A \in \text{DGA}_k$

$$\underline{\det} : \text{D}\Gamma_R^n(A)^{ab} \rightarrow \text{DRep}_n(A)^{\text{GL}_n}$$

is an isomorphism in $\text{Ho}(\text{DGA}_k)$.

Higher order trace map

Let $B \in \text{CDGA}_k$. For a matrix $b \in M_n(B)$, let $e_i(b) := \text{tr}(\wedge^i b)$, which we call the *i-th higher order trace* of b . It is well-known that

$$\det(\lambda \cdot I - b) = \lambda^n + \sum_{i=1}^n (-1)^i e_i(b) \lambda^{n-i}.$$

For any $A \in \text{Ho}(\text{DGA}_k)$, let us denote

$$\text{CC}_{\bullet}^{[i]}(A) := (\text{D}\Gamma_k^i(A)_{\natural}, \partial)$$

and call it the *i-th higher order cyclic complex* of A .

Then we obtain a well-defined chain map:

$$\text{DTr}^i : \text{CC}_{\bullet}^{[i]}(A) \rightarrow \text{DRep}_n(A)^{\text{GL}_n}, \quad \bar{u} \mapsto e_i(u),$$

which we call the *i-th derived higher order trace map*.

Thank You!