

Classification of exchange relation planar algebras through sieving forest fusion graphs

Fan Lu

Joint work with Zhengwei Liu

BIMSA

International Conference on Hopf Algebras and Tensor Categories

Jan. 19-23, 2026

Subfactors and the Jones Index

Subfactor:

- A $*$ -subalgebra $\mathcal{M} \subset B(H)$ is called a **von Neumann algebra** if it is W.O.T. closed. A **factor** is a vN-alg with trivial center.
- A **subfactor** is an inclusion of factors $\mathcal{N} \subset \mathcal{M}$.

Jones Index:

- For a subfactor $\mathcal{N} \subset \mathcal{M}$, the **Jones index** is defined as the dimension of \mathcal{M} as a left \mathcal{N} -module:

$$[\mathcal{M} : \mathcal{N}] := \dim_{\mathcal{N}} \mathcal{M}.$$

- Intuitively, this measures the “relative size” of \mathcal{M} compared to \mathcal{N} .

Jones’ Index Theorem (Jones 1983):

- The index of a subfactor can only take the following values:

$$\left\{ 4 \cos^2 \frac{\pi}{n} \mid n = 3, 4, 5, \dots \right\} \cup [4, \infty].$$

- Each allowed index value can be realized by some subfactor.

Bimodule Category

Bimodule Category as a 2-Category

- objects: \mathcal{N}, \mathcal{M} ;
- 1-morphisms: \mathcal{A} – \mathcal{B} bimodules for \mathcal{A}, \mathcal{B} in $\{\mathcal{N}, \mathcal{M}\}$;
- 2-morphisms: bimodule intertwiners;
- horizontal composition: relative tensor product;
- vertical composition: composition of intertwiners.

Irreducible Bimodules and Principal Graph

- Decompose $\mathcal{M}_k = \mathcal{M} \otimes_{\mathcal{N}} \mathcal{M} \otimes_{\mathcal{N}} \mathcal{M} \cdots \otimes_{\mathcal{N}} \mathcal{M}$ into irreducible bimodules.
- The **principal graph** is a bipartite graph between irreducible \mathcal{N} – \mathcal{N} bimodules and \mathcal{N} – \mathcal{M} bimodules.
- \mathcal{N} – \mathcal{N} bimodule category is a tensor/fusion category.

Standard Invariants of Subfactors

- Subfactors have various invariants: index, principal graph, fusion rule, standard invariant, etc.
- Popa's deep result states that amenable subfactors are classified by the standard invariant.
- The standard invariant has various axiomatizations:
 - Ocneanu's paragroups,
 - Popa's λ -lattices,
 - Jones' **subfactor planar algebras**.

Classification of Subfactors

Several classification programs on subfactors have been addressed:

- Small index: ADE, Haagerup, extended Haagerup, etc
- Simple fusion rule: Bisch-Haagerup, Haagerup-Izumi (near group), integral ones, etc
- Simple generators and relations: Bisch-Jones, BMW, Liu, etc
- ...

Complexity Problem

- We need to solve certain sets of polynomial equations in all these classifications, such as flat connection equations, pentagon equations, consistency equations.
- The complexity of solving polynomial equations by the Gröbner basis grows double exponentially.
- Nowadays, we are reaching the limit of the computation power in these classification programs.
- However, new/known subfactors arisen from the classifications are quite rare.
- This is a common phenomenon for other relevant classification programs, such as fusion categories, modular tensor categories, etc.

We need brand new ideas and methods to classify/discover subfactors more efficiently.

Outline

In joint work with Zhengwei Liu [**Liu-Lu 24, arXiv:2412.17790**], we proposed a classification program based on a forest-indexed irreducible decomposition of the algebraic variety of exchange-relation and fusion-bialgebra.

It provides structure results on the classification, quantified complexity, highly efficient sieving criterions, and new examples of (subfactor) planar algebras!

Definition (Jones 1999)

A planar algebra \mathcal{P} is a family of vector spaces $(\mathcal{P}_{k,\pm})_{k \in \mathbb{N}}$, called k -box spaces, and a functor from planar tangles to those vector spaces.

- A k -box element is presented as a $2k$ -valent planar diagram. Planar algebras can be defined by generators and skein relations, satisfying consistency conditions.
- From this point of view, the Jones-Temperley-Lieb planar algebras are the simplest ones with only a circle parameter δ .
- Reflection Positivity/Unitarity holds iff δ^2 is a Jones index.

Exchange Relation

The exchange relation was introduced by Landau in 2002, inspired by the exchange relation of a biprojection given by Bisch in 1994.

$$\textcircled{1} \quad p_i \begin{array}{c} \diagup \\ \diagdown \end{array} \bigcirc = \frac{d_i}{\delta} \quad \bigg| \quad , \quad p_i \begin{array}{c} \diagup \\ \diagdown \end{array} \bigg(\begin{array}{c} \diagup \\ \diagdown \end{array} \bigg) = \delta_{i0} \quad \bigg(\begin{array}{c} \diagup \\ \diagdown \end{array} \bigg),$$

$$\textcircled{2} \quad \begin{array}{c} p_j \\ p_i \end{array} \begin{array}{c} \diagup \\ \diagdown \end{array} = \delta_{ij} \quad p_i \begin{array}{c} \diagup \\ \diagdown \end{array} \quad , \quad p_i \begin{array}{c} \diagup \\ \diagdown \end{array} \begin{array}{c} p_j \\ \diagup \\ \diagdown \end{array} = \frac{1}{\delta} \sum_{k=0}^{n-1} N_{ij}^k \quad p_k \begin{array}{c} \diagup \\ \diagdown \end{array},$$

$$\textcircled{3} \quad p_i \begin{array}{c} \diagup \\ \diagdown \end{array} \begin{array}{c} p_j \\ p_s \end{array} = \sum_{s,t=0}^{n-1} a_{st}^{ij} \begin{array}{c} \diagup \\ \diagdown \end{array} \begin{array}{c} p_s \\ p_t \end{array} + \sum_{\ell,m=0}^{n-1} b_{\ell m}^{ij} \begin{array}{c} \diagup \\ \diagdown \end{array} \begin{array}{c} p_m \\ p_{\ell} \end{array}.$$

Remark: $p_0 = \frac{1}{\delta} \bigcup$ is the Jones projection.

Previous Classification Results

Theorem (Bisch-Jones 2000,2003)

Suppose \mathcal{P} is an exchange relation planar algebra with $\dim \mathcal{P}_2 = 3$. Then \mathcal{P} is $\mathcal{P}^{\mathbb{Z}_3}$, $TL * TL$ or $\mathcal{P}^{\mathbb{Z}_2 \subset \mathbb{Z}_5 \rtimes \mathbb{Z}_2}$.

Theorem (Liu 2016)

Suppose \mathcal{P} is an exchange relation planar algebra with $\dim \mathcal{P}_2 = 4$. Then \mathcal{P} is one of the following:

- (1) $\mathcal{P}^{\mathbb{Z}_4}$ or $\mathcal{P}^{\mathbb{Z}_2 \oplus \mathbb{Z}_2}$;
- (2) $\mathcal{A} * TL$ or $TL * \mathcal{A}$, where \mathcal{A} is an exchange relation planar algebra with $\dim \mathcal{A}_2 = 3$;
- (3) $\mathcal{P}^{\mathbb{Z}_2} \otimes TL$;
- (4) $\mathcal{P}^{\mathbb{Z}_2 \subset \mathbb{Z}_7 \rtimes \mathbb{Z}_2}$.

Jones thought that there would be many examples in the classification as the exchange relation is mild, but the outcomes were quite rare.

Three Fundamental Questions of Skein Relations

- ① **Evaluation:** One needs to provide an evaluation algorithm based on enough relations, so that any closed diagram reduces to a polynomial of parameterized variables.
- ② **Consistency:** The value of different reductions process should be the same, which leads to a set of polynomial equations.
- ③ **Unitarity:** if one wants a subfactor from the planar algebra, then one needs to verify the reflection positivity condition for certain variables.

Evaluation is ensured by exchange relations, while unitarity need to be verified on a case-by-case basis.

We first focus on the consistency condition.

Observations

Question: What are the consistency equations for exchange relations?

Theorem (Liu 16)

Exchange relation planar algebras are classified by the structure constants of operations on 2-boxes.

Question: How to express the variables $\{a_{sk}^{ij}\}$, $\{b_{sk}^{ij}\}$ in terms of $\{N_{ij}^k\}$ and $\{d_i : 0 \leq i \leq n - 1\}$?

Question: How to axiomatize the structure constants $\{N_{ij}^k\}$ and $\{d_i : 0 \leq i \leq n - 1\}$? (without assuming exchange relation)

Fusion bialgebra

A fusion algebra is an axiomatization of an Abelian 2-box algebra $\mathcal{P}_{2,+}$. It was introduced for unitary case in **[Liu-Palcoux-Wu, 2021]**.

Definition (Fusion Bialgebra Variety, Liu-Lu 2024)

A fusion bialgebra \mathcal{B} is a vector space over a field \mathbb{K} with a basis $B = \{p_0, p_1, \dots, p_{n-1}\}$, equipped with an associative multiplication \cdot and convolution $*$, an involution $\bar{}$, a linear functional $d : \mathcal{B} \rightarrow \mathbb{K}$, satisfying the following conditions:

- ① $p_j \cdot p_k = \delta_{jk} p_j$;
- ② $p_j * p_k = \sum_{s=0}^{n-1} N_{jk}^s p_s$;
- ③ \exists an involution $\bar{}$ on $\{0, 1, 2, \dots, n-1\}$ s.t. $\bar{p_k} = p_{\bar{k}}$ and $\bar{p_0} = p_0$;
- ④ $d|_B \neq 0$ and
 - $d(p_j * p_k) = d(p_j)d(p_k)$ and $d(p_k) = d(p_{\bar{k}})$;
 - $N_{jk}^0 = \delta_{j\bar{k}} d(p_j)$;
 - $d(p_0) = 1$ and $\sum_{s=0}^{n-1} d(p_s) \neq 0$.

Exchange Relation Fusion Bialgebras

- A fusion bialgebra is called subfactorizable, if it is the 2-box space of a subfactor planar algebra.
- A exchange relation fusion bialgebra is the 2-box space of an exchange relation planar algebra.

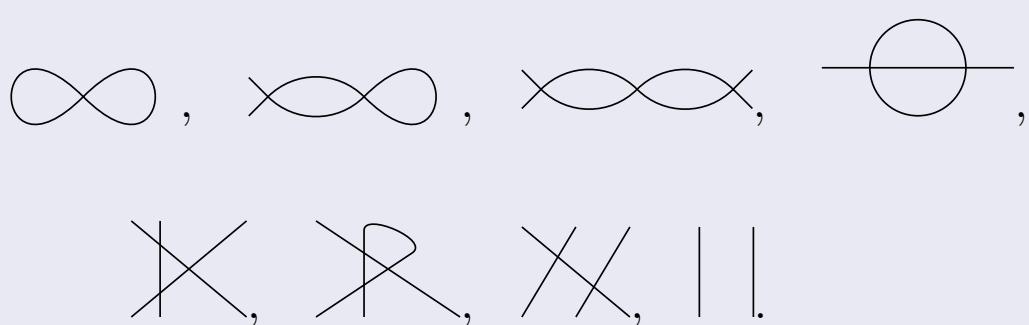
$$S_0 = \{\emptyset\}, S_1 = \{|\}, S_2 = \{||, \text{---}, \text{X}\}.$$

$$S_3 = \{|||, \text{---}|, | \text{---}, \text{---}\}.$$

The 4-valent vertices are labelled by basis elements p_i in B.

Theorem (Liu-Lu 2024)

The consistency conditions for exchange relation planar algebras are equivalent to the consistency conditions on the inner product of the following tangles and elements in S_k , $k \leq 3$.



Theorem (Exchange Relation Variety, Liu-Lu 2024)

The consistency conditions for an exchange relation fusion bialgebra \mathcal{B} are equivalent to the following exchange relation algebraic variety, beside the fusion bialgebra variety:

$$d_i = d_{\bar{i}}, \quad N_{kj}^0 = \delta_{k\bar{j}} d_k, \quad N_{kj}^i = N_{\bar{j}k}^{\bar{i}}, \quad (1)$$

$$d_i d_j = \sum_{s=0}^{n-1} N_{ij}^s d_s, \quad \sum_{s=0}^{n-1} N_{ij}^s N_{sk}^{\ell} = \sum_{s=0}^{n-1} N_{is}^{\ell} N_{jk}^s, \quad (2)$$

$$N_{kl}^s (a_{sk}^{ij} + b_{lk}^{ij} - \delta_{si} \delta_{\ell j}) = 0, \quad (3)$$

$$N_{zy}^x \sum_{s=0}^{n-1} (a_{sz}^{jk} N_{si}^x + b_{sz}^{jk} N_{si}^y - a_{s\bar{x}}^{\bar{i}j} N_{s\bar{k}}^{\bar{y}} - b_{s\bar{x}}^{\bar{i}j} N_{s\bar{k}}^z) = 0, \quad (4)$$

$$N_{zy}^x \sum_{s=0}^{n-1} (a_{sz}^{jk} N_{si}^x + b_{sz}^{jk} N_{si}^y - a_{sy}^{k\bar{i}} N_{s\bar{j}}^{\bar{z}} - b_{sy}^{k\bar{i}} N_{s\bar{j}}^{\bar{x}}) = 0, \quad (5)$$

$$N_{i\bar{j}}^k = \sum_{s=0}^{n-1} (a_{sk}^{ij} + b_{sk}^{ij}) d_s, \quad \delta^2 = \sum_{s=0}^{n-1} d_s. \quad (6)$$

Analogy between PA and FC

Planar Algebras	Fusion Categories
Fusion bialgebra	Fusion ring
Exchange coefficients	F -symbols
Consistency equations	Pentagon equations

Question: How to solve Consistency equations efficiently?

- The number of variables is $O(n^4)$.
- the number of equations is $O(n^6)$.
- The highest degree of the equations is 3.

Forest fusion graph

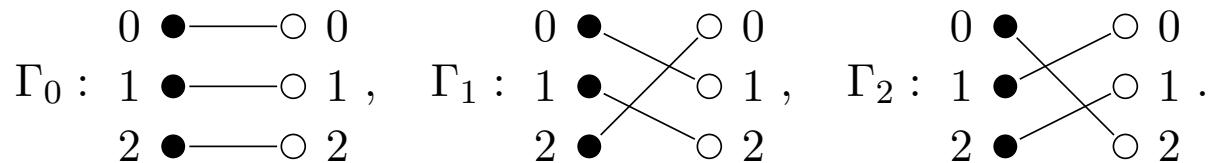
Definition

Let \mathcal{B} be a fusion bialgebra with a basis $B = \{p_0, p_1, \dots, p_{n-1}\}$. The fusion graph Γ_j of p_j is a bipartite graph with n black/white vertices labelled by elements in B . There is an edge between black p_k and white p_s if $N_{j,k}^s \neq 0$. The fusion graph $\Gamma := \{\Gamma_j : 0 \leq j \leq n-1\}$.

Theorem (Liu-Lu 2024)

A fusion bialgebra has exchange relations if and only if every fusion graph Γ_j is a forest.

Example: Forest fusion graph for the group planar algebra $\mathcal{P}^{\mathbb{Z}_3}$.



Structure Theorems

Theorem (Liu-Lu 2024)

Given a forest fusion graph Γ in an exchange relation fusion bialgebra, the exchange coefficients $\{a_{sk}^{ij}\}$, $\{b_{sk}^{ij}\}$ are 0 or ± 1 determined by Γ .

Theorem (Liu-Lu 2024)

The fusion coefficient N_{ij}^k is a sum of d_i determined by Γ .

$$N_{ij}^k = \sum_{s=0}^{n-1} (a_{sk}^{ij} + b_{sk}^{ij}) d_s.$$

Forest Decomposition

For any forest fusion graph Γ ,

- The variables $\{a_{sk}^{ij}\}$, $\{b_{sk}^{ij}\}$ and $\{N_{ij}^k\}$ reduced to quantum dimensions $\{d_i : 0 \leq i \leq n-1\}$, from $O(n^4)$ to n variables!
- Consistency equations reduce to **linear** equations and the **quadratic** associativity equation!

$$\sum_{s=0}^{n-1} N_{ij}^s N_{sk}^\ell = \sum_{s=0}^{n-1} N_{is}^\ell N_{jk}^s.$$

- The number of equations is $O(n^6)$.

Conjecture

We conjecture that this forest-indexed decomposition of the algebraic variety of exchange-relation and fusion-algebra is an irreducible decomposition.

Exponential Complexity

For any forest fusion graph Γ , the corresponding (irreducible) algebraic variety is an overdetermined system, which can be easily solved.

However, the number of fusion graphs is approximately $2^{n^3/6}$. It is about 10^{80} , the number of particles in the observable universe for $10 < n < 11$.

How to sieve forest fusion graphs that have solutions?

Table 1: The number of fusion graphs in rank n .

Rank	# Fusion Graphs
3	16
4	1,024
5	1,048,576
6	68,719,476,736

Free/Tensor Product Criteria

Forest fusion graph determines Free/Tensor Product structure!

Theorem (Free Product Criterion)

Let Γ be the forest fusion graph of an exchange relation fusion bialgebra \mathcal{B} , and let $\tilde{\Gamma}$ be the fusion graph of the nontrivial free product of two exchange relation fusion bialgebras. If $\Gamma = \tilde{\Gamma}$, then \mathcal{B} is a nontrivial free product of two exchange relation fusion bialgebras.

Theorem (Tensor Product Criterion)

Let Γ be the forest fusion graph of an exchange relation fusion bialgebra \mathcal{B} , and let $\tilde{\Gamma}$ be the fusion graph of the nontrivial tensor product of two exchange relation fusion bialgebras. If $\Gamma = \tilde{\Gamma}$, then \mathcal{B} is a nontrivial tensor product of two exchange relation fusion bialgebras.

Analytic criteria

Theorem (Associative Positivity Criterion)

Given a forest fusion graph, if there exists i, j, k, ℓ such that every monomial in $f(i, j, k, \ell)$ has the same sign, then \mathcal{B} is not subfactorizable.

$$f(i, j, k, \ell) = \sum_{s=0}^{n-1} N_{ij}^s N_{sk}^\ell - \sum_{s=0}^{n-1} N_{is}^\ell N_{jk}^s.$$

Theorem (Unitary Free/Tensor Product Criterion)

A subfactorizable exchange relation fusion bialgebra \mathcal{B} is a nontrivial free/tensor product if and only if the forest fusion graph is a free/tensor product.

These analytic criteria are derived from methods in quantum Fourier analysis on subfactors.

An automated classification scheme

Input: The rank n ,

- ① **(FF)** Enumerate all Forest Fusion graphs.
- ② **(AP)** Sieve graphs that do not satisfy the Associative Positivity Criterion.
- ③ **(FP/TP)** Sieve graphs from the Free/Tensor Product.
- ④ **(GB)** Solve Consistency Equations using Gröbner Basis for each forest fusion graph.

Output: : Solutions N_{ij}^k and variables d_i .

Results

The running time of our algorithm on a personal computer is 1.2 seconds for $n \leq 5$ and a couple minutes for $n = 6$. The number of solutions is summarized in the following table:

n	number of graphs	algebraic solutions	subfactors
3	16	7	6
4	1,024	24	20
5	1,048,576	88	61
6	68,719,476,736	275	198+

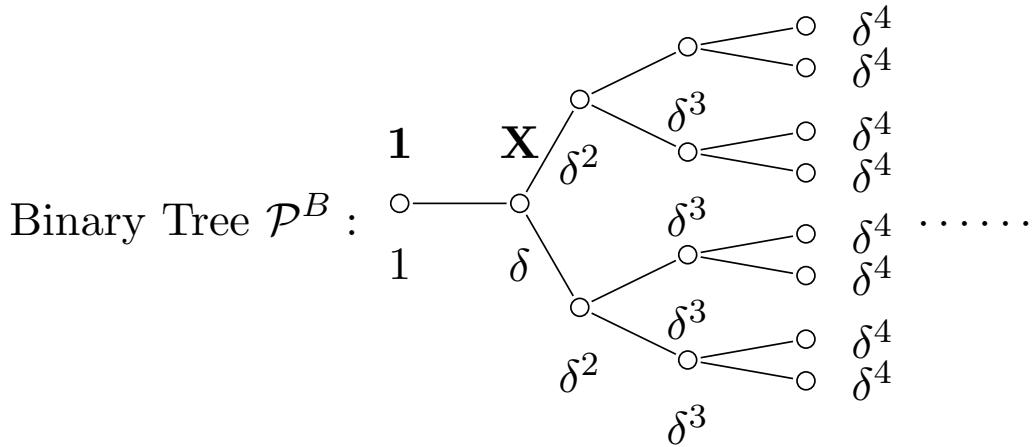
Subfactor Case:

- $n = 3$, Bisch-Jones Classification (2003)
- $n = 4$, Liu Classificaton (2016)

Classification for rank 3 fusion bialgebra

Theorem (Liu-Lu 2024)

Suppose \mathcal{B} is a rank 3 semisimple exchange relation fusion bialgebra over \mathbb{C} . Then \mathcal{B} arises from one of the following planar algebras: (1) $\mathcal{P}^{\mathbb{Z}_3}$; (2) $TL * TL$; (3) $\mathcal{P}^{\mathbb{Z}_2 \subset \mathbb{Z}_5 \rtimes \mathbb{Z}_2}$; (4) The binary tree planar algebra \mathcal{P}^B .



Remark: \mathcal{P}^B exists over any field where $\delta^2 = -1$ has a solution.

Discussion of the Results

For $n \leq 5$, all solutions are from groups, Temperley-Lieb-Jones, the binary tree planar algebras or their tensor/free product. We provide several criteria derived from Quantum Fourier Analysis to test reflection positivity. The sieving efficiency is remarkably 100%. All algebraic solutions passing the criteria produce subfactors.

For $n = 6$, there are 6 forest types which are neither groups, nor tensor/free products. They include

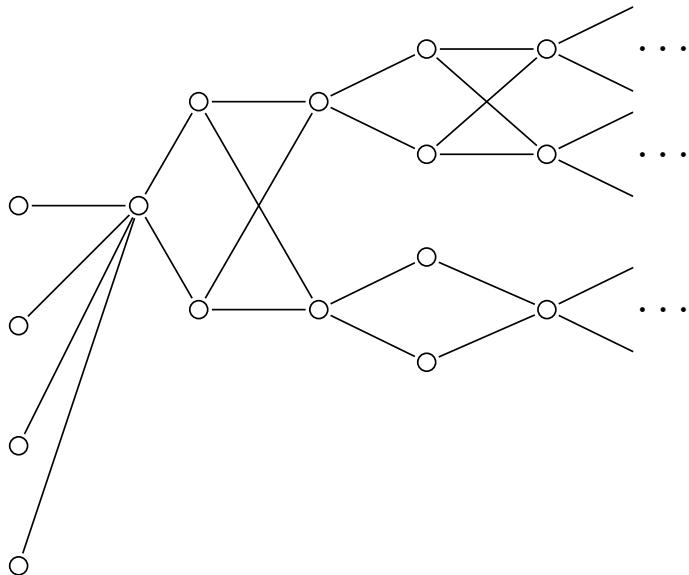
- a self dual planar algebra with index -2 ;
- a self dual one with index 10 ;
- a dual pair with index 8 ;
- a dual pair of one-parameter families.

New Subfactors at Rank 6

Theorem (Liu-Lu 2025)

There exists a family of infinite depth subfactors having the following graphs as principal graphs and the index values lie in the set

$$\{16 \cos^2(\pi/n) : n = 5, 6, \dots\}.$$



Outlook

The rank $6 = 2 \times 3$ is the transition point that we start to see several non-trivial examples beyond (quantum) groups and tensor/free products. We expect to see more examples and new mathematical structures when n gets larger.

Using structure theorems and highly efficient sieving methods, we begin to uncover new subfactors and planar algebras in a vast and largely unexplored landscape.

We plan to design additional algorithms to further improve the efficiency of automated sieving, which we expect will lead us into a rich and wild world of subfactor planar algebras.

Thank you!

Appendix: New 6D ER fusion bialgebra ($\delta^2 = 10$)

$$\begin{aligned}
 & N_1 \begin{bmatrix} 0 & 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 0 & 0 \end{bmatrix}, N_2 \begin{bmatrix} 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{bmatrix}, N_3 \begin{bmatrix} 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix} \\
 & N_4 \begin{bmatrix} 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \end{bmatrix}, N_5 \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
 \end{aligned}$$

$$d_0 = d_5 = 1, \quad d_1 = d_2 = d_3 = d_4 = 2.$$