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Theorem

Suppose that K is an algebraically closed field

of characteristic zero.

Suppose that H is finite-dimensional

commutative Hopf algebra over K.

Then H is a dual group ring, i.e.,
H = K[G]"

for a finite group G.



Proof
H commutative = S? = id (H is involutory.)
Assumptions on the base field = H is semisimple.
Wedderburn's theorem: H=Z K x K x ... x K = K".

= There are n distinct algebra homomorphisms to K,

namely the projections to the components.
These are group-like elements in the dual.

= These group-like elements form a basis of the dual, i.e.,
H* = Span(G(H")) = K[G(H")]

= H = K[G]*, where G := G(H"). O
We will now investigate the same question for Yetter-Drinfel'd

Hopf algebras.
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Yetter-Drinfel’d modules
H: Hopf algebra
Yetter-Drinfel'd module:

Left module and left comodule over H.
Coaction: 6: V> H® V, v— vl @ v@
Compatibility condition:
5(h.v) = hayvWS(he)) @ hy.v?®
More precisely: Left-left Yetter-Drinfel'd modules
H = K[G]: Yetter-Drinfel'd module = G-graded vector space

with an additional G-action.
Compatibility condition:

deg(v) = g = deg(h.v) = hgh™*



Quasisymmetry

Tensor product of Yetter-Drinfel'd modules:

Diagonal module and codiagonal comodule structure:
h.(vew) = A(h).(vew) s(vow) = v ev@gw?
V& W and W ® V are isomorphic:

ovw: VoW -sWeV, vaw— (vI.w) e v®

Note: In contrastto v Q@ w — w ® v,

ov w is H-linear and colinear.



Yetter-Drinfel'd Hopf algebras

Yetter-Drinfel'd Hopf algebra A over H:
Hopf algebra in the category of Yetter-Drinfel'd modules.

This means:
1. Ais a (left-left) Yetter-Drinfel'd module over H.
2. Alis an ordinary algebra whose product 1 : AQ A — A and
unit map n: K — A, A +— Al are H-linear and colinear.

3. Ais an ordinary coalgebra whose coproduct
A:A— A® A and counit € : A— K are H-linear and
colinear.

4. A has an H-linear and colinear antipode S that satisfies

the same axioms as for usual Hopf algebras.

5. and ...



The decisive difference

. A and ¢ are algebra homomorphisms.
For the counit, this does not mean anything new.
But when saying that A is an algebra homomorphism, we refer

to the algebra structure
ARARAR A AR AR A0 AXS A A

on A® A that uses the quasisymmetry o, and not the usual
flip of the tensor factors.
This algebra structure will be denoted by ARQA.



Diagrammatic form

This means that the following diagram commutes:

ARARA®A
id ®o ® id [
ARARAR®A AR A
A®A A
AR A A




Trivial Yetter-Drinfel'd Hopf algebras

Consequence: If the quasisymmetry o coincides with the
usual flip of the tensor factors, then a Yetter-Drinfel'd Hopf

algebra is an ordinary Hopf algebra.

Converse (P. Schauenburg, New York J. Math. 4 (1998)):
If a Yetter-Drinfel'd Hopf algebra is an ordinary Hopf algebra,
then the quasisymmetry o coincides with the usual flip of the
tensor factors.

Such Yetter-Drinfel'd Hopf algebras are called trivial.

In particular, this happens if (but not only if) the action and

the coaction are both trivial.

Such Yetter-Drinfel'd Hopf algebras are called completely

trivial.



Radford biproduct

If Ais a Yetter-Drinfel'd Hopf algebra over H,
then A ® H becomes a Hopf algebra in the following way:
Multiplication: Smash product

(a (] h)(a’ X /‘Il) = a(h(l).a’) X h(g)h,
Comultiplication: Cosmash coproduct

Aasn(a® h) = (aq) ® ap)Vh)) @ (a)® © he)



The Radford projection theorem (D. Radford, J. Algebra 92 (1985))

Suppose that H is a Hopf subalgebra of B,
and that 7 : B — H is a Hopf algebra retraction.

Then B decomposes as a Radford biproduct B = A® H
where A= B = {be B | (id@m)A(b) = b® 1}

The isomorphism is just multiplication:

ARH— B, a® h+— ah



Commutative semisimple Yetter-Drinfel'd Hopf algebras

From now on: K algebraically closed of characteristic zero.

We have seen: A commutative semisimple Hopf algebra is the

dual group ring of a finite group.

Goal: Prove a similar structure theorem for a commutative
semisimple Yetter-Drinfel'd Hopf algebra A
over the group ring H = K[G] of a finite abelian group G.

So far, this has only been accomplished if p := |G| is a prime.



The structure theorem in the prime order case

Suppose: |G| = p, an (odd) prime, ¢ generator of G.

Theorem: If A is nontrivial, then
A* = K% @ K[H]

H: finite group

Algebra structure: Crossed product
Coalgebra structure: Tensor product
Note that p divides dim(A).



Data

H: Finite group
v:H— Z7: Group homomorphism
o, € ZYH,Z,): 1-cocycles

a(st) = afs) + v(s)a(t)

q € Z*(H,Z,): 2-cocycle
(. Primitive p-th root of unity



Structures

e;: Canonical basis vector in KP =2 KZ»

Vector space structure: A* = K% @ K[H]
Multiplication: Crossed product

(6 @ s)(g ® t) = G5, ¢AEDT 2(800)(st) g, @ st
Comultiplication: Tensor product

Module action: c.(¢; ® s) = (¥, ® s

Comodule action: 6(e; ® s) = c/#(®) ® (e ® s)
Antipode: S(e; ® s) = (75 )(Pe)()/2 3 @ 57



Partial generalization: The triviality theorem

G: Finite abelian group

A: Yetter-Drinfel'd Hopf algebra over the group ring K[G]
Assumption 1: A is commutative and semisimple

Assumption 2: dim(A) and |G| are relatively prime

Assertion: A is trivial

It is therefore the dual group ring K[H]* of another group H
with additional structure making it a Yetter-Drinfel'd module.



Fundamental concepts in the proof

A commutative and semisimple =

A has a basis of orthogonal primitive idempotents.
Dual basis of A*: One-dimensional characters.

Every g € G acts on Avia ¢, : A = A.

This action preserves the homogeneous components.
We turn the coaction into an action of K[G]* = K[G],
where G = Hom(G, K*) is the character group =
Every v € G acts on A via Uyt A= A

Action preserves the homogeneous components =

Gg 0y =1, 0 Py



n,n € A* one-dimensional characters.
Define

T={geG|o:(n)=n Q={yeC|v:H)=n}

Proposition:

m:=|{¢s(n) | g € @} = Hi(n) v e T}



Products of characters

Usually: nn’ € A* is not again a character. Instead, we have:

Theorem: There are distinct characters wq, ..., w, such that

nn’ € Span(wi, ... ,wn)

m is the smallest number with this property.

In addition, we have

Ge(m3(n') € Span(wy, . .., win)

for all g € Q* and all vy € T+. (These are m? characters.)



First special case: n = 1/

Usually: §*(n) is not a (one-dimensional) character.
Suppose now that n =17/

Define G, := Q+/(T N Q™1).

Then we have |G,| = m.

We call |G,| the index of 7.

Corollary: S*(n) is a character < The index of 1 is 1



Second special case

Suppose that 7 is a (one-dimensional) character.

Choose a (one-dimensional) character 7’

that appears in the expansion of S$*(n).

In this situation,

1.
2.
3.

one character, say ws, is the counit.
Span(ws, . ..,wn) is a subalgebra of A*.

It is clearly a subcoalgebra of A*,

because every w; is group-like.

. Span(wi, . ..,wp) is stable under ¢, and v,

forg e Qtandye Tt

. It is also stable under the antipode.



The core

Span(wi, . ..,wn) is called the core of 7.
It does not depend on the choice of 7/

(as long as it appears in $*(7)).

Additional property:
Span(win, ..., wan) = Span({¢;(n) | g € Q*})

Span(n'ws, ..., n'wm) = Span({¥3(n) | v € T*})

So is Span(wy, . ..,wn) a Yetter-Drinfel'd Hopf subalgebra of A*?
No, because it is only stable under ¢, and 1,

forg e Qtandy € T+, and not forall g € G and v € G.
Theorem:

Span(wy, . ..,wm) is a Yetter-Drinfel'd Hopf algebra over K[G,].



Triviality theorem: Sketch of proof

Suppose that dim(A) and |G| are relatively prime.
Show first that the dimension of the core of 7 divides dim(A).

But the dimension of the core is the index m = |G, | of 1,
which divides |G].

So the index m is equal to 1.

From here, the theorem follows with some additional work.



Back to the prime order case

For a (one-dimensional) character 7,

consider the core Span(ws, . .., wWn).
We have m=1or m = p.

If m=1 for all n, then A is trivial as above,

so assume that m = p.
Then G = G, = G acts on the core.

But w; = ¢ is a fixed point, so every w; must be a fixed point

= The core is completely trivial =
Span(wi, ..., wm) = Span(e,w,w?, ..., wP™h)

for an invariant (and coinvariant) character w of order p.



The quotient

Recall that the core has the additional property that
Span(wi7, ..., wmn) = Span({¢;(n) | g € Q*})

Span(n'wi, ..., n'wm) = Span({¢i(n) [y € T*})
If we pass to a quotient where w = ¢, so that
W= ... =Wy =E¢,
the action (and also the coaction) become trivial = The
quotient is a group algebra K[H].
It turns out that the entire A* can be reconstructed from the

core and the quotient:
A" = K[(w)] ® K[H]

This is the structure theorem.



An example

We have just seen:

If |G| is prime, then the core of 7 is completely trivial.
Conjecture: The core of 7 is always trivial.

We now present an example where the core is trivial,

but not completely trivial.



Construction of the example

t,¢ € K: Fourth roots of unity, ¢ primitive.
A: Generated by commuting elements x and y
subject to the defining relations

xt=1 yzzé(l—l—(’x—l—xz—fxs‘)

Two automorphisms ¢ and ¢':

$(x)==x> (y) = x%



Basis of A
We have dim(A) = 8. A basis is wy, wa, w3, wa, N1, M2, 13, Na:
wp =1 Wy 1= %(1 +1C?)x + %(1 —1(?)x3
w3 = 2(1 —1P)x + (1 + (?)X3 Wy 1= Xx?
and
m:=Yy n =Xy N3 = X%y Na = Xy

Span(wy, wa, w3, ws) = K[Zy X Zy):

W1 | Wy | W3 | Wy

W1 | W1 | W2 | W3 | Wa

Wo | Wy | W1 | Wg | W3

W3 | W3 | Wg | W1 | W

Wg | Wy | W3 | W | W1




The coalgebra structure and the action

The coalgebra structure is determined by requiring that the

basis elements are group-like:
Alw)) =wi®@w,  Aly) =n®n
The group is G :=Z, x Z; = {g1, &, 83,84}, where
=000 &=(1,0 g&=(01) g&=(11)
g = (1,0) acts by ¢ and g3 = (0, 1) acts by ¢'.
M1, 12, M3, Na form one G-orbit.

We have ¢(ws) = ws, so {wa, w3} is a G-orbit,
while w; = 1 and ws = x? are fixed points.

Note that g3.w; = wj.



The coaction on the w;
wi and wy are coinvariant:
(w1) =41 ®uwy I(wsg) = g1 @ wy
Otherwise, we have

0(w2) = 3(81 + &) ® w2 + 3(81 — &5) ® w3
§(ws) = 3(g1 — &g3) ® w2 + 3(g1 + &3) ® w3
Therefore, we have
oaa(wr ®w;) = %(gl + g3).wi @ wa + %(gl — g3).Wi ®ws3
= w; @ wr
and similarly o4 a(w; ® wi) = w; ® w;.
This means that Span(wy, wa, w3, ws) is trivial,

but not completely trivial.



The coaction on the 7,

On G :=Z, x Z,, define a symmetric bilinear form
0:GxG— K~

by requiring that

For k = 1,2, 3,4, we define

4

1

o(m) = 5 D 0(ex &1 8)g @

ij=1



The antipode

SA(wl) = w1 SA(WQ) = W2 SA(W3) = W3 SA(W4) = W4

Sa(m) = 3(m + g2 + 13 — ¢1a)

Sa(n2) = %(% m -+ — ‘7]3 + 1)
Sa(ns) = %(7]1 4772 + 13 + 4774)
Sa(ma) = 3(=gm +n2 + 215 + 1a)



The core of 1y
Suppose that 7 := ;.

The formula for Sa(71) shows: We can choose 7' = ;.
Recall from the above theorem:

There are distinct group-like elements wy, ..., w,, such that
nm’" € Span(wi, ..., wn)

m is the smallest number with this property.

In addition, we have
Gg (), (1) € Span(wr, ..., wm)
forallg € Qtandallyc T+,

Here we have T = {1} and Q = {¢},
so T =G and Q- = G.



From the defining relations:

/

More generally:

M = 3w1 — 5pW2 + 53 + 3wa

T

1 L L 1
T | W1 — 3¢Wa + 5:wW3 + 3w

T2
¢ ¢

L 1
W1+ 5W2 + W3 — 3Wa

¢ 1 1
Uy Ewl + 5&)2 + 5&23 —

¢

2“4

1 L L 1
20)1 + ZC(JJQ — 2<C<J3 + 2W4

1 L
| 3W1+ 5ew2 —

L 1
2cW3 + 5Wa

—%wl + %wz + %W3 + gw4

Na —%wl + %wg + %C«)g, + %w4 %wl — 2—2&)2 + iw‘g + %w4
3 N4

m | swi+ W2 — 37W3 + Tws —%wl + Lwo + 3w + %w4

) —%wl -+ %wg + %u)3 + gC«J4 %wl — 2%.&)2 + iw;; + %w4

1 L L 1
3| W1 — 3¢Wa + 5:w3 + 3w

¢ 1 1 ¢
W1+ 5W2 + W3 — 3Wa

¢ 1 1
Na Ewl + 5&12 + 5&23 —

¢

2“4

1 L L 1
20)1 + QC(JJQ — 2<w3 + 2W4




So the core of = 1y is Span(ws, ws, w3, ws).

We have already seen that Span(wsy,ws,ws,wy) is trivial,

but not completely trivial.
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