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Theorem

Suppose that K is an algebraically closed field

of characteristic zero.

Suppose that H is finite-dimensional

commutative Hopf algebra over K .

Then H is a dual group ring, i.e.,

H ∼= K [G ]∗

for a finite group G .



Proof

H commutative ⇒ S2 = id (H is involutory.)

Assumptions on the base field ⇒ H is semisimple.

Wedderburn’s theorem: H ∼= K × K × . . .× K = K n.

⇒ There are n distinct algebra homomorphisms to K ,

namely the projections to the components.

These are group-like elements in the dual.

⇒ These group-like elements form a basis of the dual, i.e.,

H∗ = Span(G (H∗)) ∼= K [G (H∗)]

⇒ H ∼= K [G ]∗, where G := G (H∗).

We will now investigate the same question for Yetter-Drinfel’d

Hopf algebras.



Outline

1. Yetter-Drinfel’d modules

2. Yetter-Drinfel’d Hopf algebras

3. The Radford biproduct construction

4. Commutative semisimple Yetter-Drinfel’d Hopf algebras

over finite abelian groups

5. The structure theorem in the prime order case

6. The triviality theorem in the general case

7. The core of a (one-dimensional) character

8. An example



Yetter-Drinfel’d modules

H : Hopf algebra

Yetter-Drinfel’d module:

Left module and left comodule over H .

Coaction: δ : V → H ⊗ V , v 7→ v (1) ⊗ v (2)

Compatibility condition:

δ(h.v) = h(1)v
(1)S(h(3))⊗ h(2).v

(2)

More precisely: Left-left Yetter-Drinfel’d modules

H = K [G ]: Yetter-Drinfel’d module = G -graded vector space

with an additional G -action.

Compatibility condition:

deg(v) = g ⇒ deg(h.v) = hgh−1



Quasisymmetry

Tensor product of Yetter-Drinfel’d modules:

Diagonal module and codiagonal comodule structure:

h.(v⊗w) = ∆(h).(v⊗w) δ(v⊗w) = v (1)w (1)⊗v (2)⊗w (2)

V ⊗W and W ⊗ V are isomorphic:

σV ,W : V ⊗W → W ⊗ V , v ⊗ w 7→ (v (1).w)⊗ v (2)

Note: In contrast to v ⊗ w 7→ w ⊗ v ,

σV ,W is H-linear and colinear.



Yetter-Drinfel’d Hopf algebras

Yetter-Drinfel’d Hopf algebra A over H :

Hopf algebra in the category of Yetter-Drinfel’d modules.

This means:

1. A is a (left-left) Yetter-Drinfel’d module over H .

2. A is an ordinary algebra whose product µ : A⊗A → A and

unit map η : K → A, λ 7→ λ1 are H-linear and colinear.

3. A is an ordinary coalgebra whose coproduct

∆ : A → A⊗ A and counit ε : A → K are H-linear and

colinear.

4. A has an H-linear and colinear antipode S that satisfies

the same axioms as for usual Hopf algebras.

5. and ...



The decisive difference

... ∆ and ε are algebra homomorphisms.

For the counit, this does not mean anything new.

But when saying that ∆ is an algebra homomorphism, we refer

to the algebra structure

A⊗ A⊗ A⊗ A
id⊗σ⊗id−→ A⊗ A⊗ A⊗ A

µ⊗µ−→ A⊗ A

on A⊗ A that uses the quasisymmetry σ, and not the usual

flip of the tensor factors.

This algebra structure will be denoted by A⊗̂A.



Diagrammatic form

This means that the following diagram commutes:

A⊗ A⊗ A⊗ A A⊗ A

A⊗ A⊗ A⊗ A

id⊗σ ⊗ id
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A⊗ A⊗ A⊗ A A⊗ A
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∆⊗∆
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Trivial Yetter-Drinfel’d Hopf algebras

Consequence: If the quasisymmetry σ coincides with the

usual flip of the tensor factors, then a Yetter-Drinfel’d Hopf

algebra is an ordinary Hopf algebra.

Converse (P. Schauenburg, New York J. Math. 4 (1998)):

If a Yetter-Drinfel’d Hopf algebra is an ordinary Hopf algebra,

then the quasisymmetry σ coincides with the usual flip of the

tensor factors.

Such Yetter-Drinfel’d Hopf algebras are called trivial.

In particular, this happens if (but not only if) the action and

the coaction are both trivial.

Such Yetter-Drinfel’d Hopf algebras are called completely

trivial.



Radford biproduct

If A is a Yetter-Drinfel’d Hopf algebra over H ,

then A⊗ H becomes a Hopf algebra in the following way:

Multiplication: Smash product

(a ⊗ h)(a′ ⊗ h′) = a(h(1).a
′)⊗ h(2)h

′

Comultiplication: Cosmash coproduct

∆A⊗H(a ⊗ h) = (a(1) ⊗ a(2)
(1)h(1))⊗ (a(2)

(2) ⊗ h(2))



The Radford projection theorem (D. Radford, J. Algebra 92 (1985))

Suppose that H is a Hopf subalgebra of B ,

and that π : B → H is a Hopf algebra retraction.

Then B decomposes as a Radford biproduct B ∼= A⊗ H

where A = BcoH = {b ∈ B | (id⊗π)∆(b) = b ⊗ 1}

The isomorphism is just multiplication:

A⊗ H → B , a ⊗ h 7→ ah



Commutative semisimple Yetter-Drinfel’d Hopf algebras

From now on: K algebraically closed of characteristic zero.

We have seen: A commutative semisimple Hopf algebra is the

dual group ring of a finite group.

Goal: Prove a similar structure theorem for a commutative

semisimple Yetter-Drinfel’d Hopf algebra A

over the group ring H = K [G ] of a finite abelian group G .

So far, this has only been accomplished if p := |G | is a prime.



The structure theorem in the prime order case

Suppose: |G | = p, an (odd) prime, c generator of G .

Theorem: If A is nontrivial, then

A∗ ∼= KZp ⊗ K [H]

H : finite group

Algebra structure: Crossed product

Coalgebra structure: Tensor product

Note that p divides dim(A).



Data

H : Finite group

ν : H → Z×
p : Group homomorphism

α, β ∈ Z 1(H ,Zp): 1-cocycles

α(st) = α(s) + ν(s)α(t)

q ∈ Z 2(H ,Zp): 2-cocycle

ζ: Primitive p-th root of unity



Structures

ei : Canonical basis vector in K p ∼= KZp

Vector space structure: A∗ = KZp ⊗ K [H]

Multiplication: Crossed product

(ei ⊗ s)(ej ⊗ t) = δiν(s),jζ
iq(s,t)+ i2

2
(β∪α)(s,t)ei ⊗ st

Comultiplication: Tensor product

Module action: c .(ei ⊗ s) = ζ iα(s)ei ⊗ s

Comodule action: δ(ei ⊗ s) = c iβ(s) ⊗ (ei ⊗ s)

Antipode: S(ei ⊗ s) = ζ iq(s,s
−1)ζ i

2α(s)β(s)/2e−iν(s) ⊗ s−1



Partial generalization: The triviality theorem

G : Finite abelian group

A: Yetter-Drinfel’d Hopf algebra over the group ring K [G ]

Assumption 1: A is commutative and semisimple

Assumption 2: dim(A) and |G | are relatively prime

Assertion: A is trivial

It is therefore the dual group ring K [H]∗ of another group H

with additional structure making it a Yetter-Drinfel’d module.



Fundamental concepts in the proof

A commutative and semisimple ⇒
A has a basis of orthogonal primitive idempotents.

Dual basis of A∗: One-dimensional characters.

Every g ∈ G acts on A via ϕg : A → A.

This action preserves the homogeneous components.

We turn the coaction into an action of K [G ]∗ ∼= K [Ĝ ],

where Ĝ = Hom(G ,K×) is the character group ⇒
Every γ ∈ Ĝ acts on A via ψγ : A → A.

Action preserves the homogeneous components ⇒

ϕg ◦ ψγ = ψγ ◦ ϕg



η, η′ ∈ A∗ one-dimensional characters.

Define

T := {g ∈ G | ϕ∗
g (η) = η} Q := {γ ∈ Ĝ | ψ∗

γ(η
′) = η′}

Proposition:

m := |{ϕ∗
g (η) | g ∈ Q⊥}| = |{ψ∗

γ(η
′) | γ ∈ T⊥}|



Products of characters

Usually: ηη′ ∈ A∗ is not again a character. Instead, we have:

Theorem: There are distinct characters ω1, . . . , ωm such that

ηη′ ∈ Span(ω1, . . . , ωm)

m is the smallest number with this property.

In addition, we have

ϕ∗
g (η)ψ

∗
γ(η

′) ∈ Span(ω1, . . . , ωm)

for all g ∈ Q⊥ and all γ ∈ T⊥. (These are m2 characters.)



First special case: η = η′

Usually: S∗(η) is not a (one-dimensional) character.

Suppose now that η = η′.

Define Gη := Q⊥/(T ∩ Q⊥).

Then we have |Gη| = m.

We call |Gη| the index of η.

Corollary: S∗(η) is a character ⇔ The index of η is 1



Second special case

Suppose that η is a (one-dimensional) character.

Choose a (one-dimensional) character η′

that appears in the expansion of S∗(η).

In this situation,

1. one character, say ω1, is the counit.

2. Span(ω1, . . . , ωm) is a subalgebra of A∗.

3. It is clearly a subcoalgebra of A∗,

because every ωi is group-like.

4. Span(ω1, . . . , ωm) is stable under ϕg and ψγ

for g ∈ Q⊥ and γ ∈ T⊥.

5. It is also stable under the antipode.



The core

Span(ω1, . . . , ωm) is called the core of η.

It does not depend on the choice of η′

(as long as it appears in S∗(η)).

Additional property:

Span(ω1η, . . . , ωmη) = Span({ϕ∗
g (η) | g ∈ Q⊥})

Span(η′ω1, . . . , η
′ωm) = Span({ψ∗

γ(η
′) | γ ∈ T⊥})

So is Span(ω1, . . . , ωm) a Yetter-Drinfel’d Hopf subalgebra of A∗?

No, because it is only stable under ϕg and ψγ

for g ∈ Q⊥ and γ ∈ T⊥, and not for all g ∈ G and γ ∈ Ĝ .

Theorem:

Span(ω1, . . . , ωm) is a Yetter-Drinfel’d Hopf algebra over K [Gη].



Triviality theorem: Sketch of proof

Suppose that dim(A) and |G | are relatively prime.

Show first that the dimension of the core of η divides dim(A).

But the dimension of the core is the index m = |Gη| of η,
which divides |G |.

So the index m is equal to 1.

From here, the theorem follows with some additional work.



Back to the prime order case

For a (one-dimensional) character η,

consider the core Span(ω1, . . . , ωm).

We have m = 1 or m = p.

If m = 1 for all η, then A is trivial as above,

so assume that m = p.

Then G = Gη ⇒ G acts on the core.

But ω1 = ε is a fixed point, so every ωi must be a fixed point

⇒ The core is completely trivial ⇒

Span(ω1, . . . , ωm) = Span(ε, ω, ω2, . . . , ωp−1)

for an invariant (and coinvariant) character ω of order p.



The quotient

Recall that the core has the additional property that

Span(ω1η, . . . , ωmη) = Span({ϕ∗
g (η) | g ∈ Q⊥})

Span(η′ω1, . . . , η
′ωm) = Span({ψ∗

γ(η
′) | γ ∈ T⊥})

If we pass to a quotient where ω = ε, so that

ω1 = . . . = ωm = ε,

the action (and also the coaction) become trivial ⇒ The

quotient is a group algebra K [H].

It turns out that the entire A∗ can be reconstructed from the

core and the quotient:

A∗ ∼= K [⟨ω⟩]⊗ K [H]

This is the structure theorem.



An example

We have just seen:

If |G | is prime, then the core of η is completely trivial.

Conjecture: The core of η is always trivial.

We now present an example where the core is trivial,

but not completely trivial.



Construction of the example

ι, ζ ∈ K : Fourth roots of unity, ι primitive.

A: Generated by commuting elements x and y

subject to the defining relations

x4 = 1 y 2 = 1
2
(1 + ζx + x2 − ζx3)

Two automorphisms ϕ and ϕ′:

ϕ(x) := x3 ϕ(y) := x3y

ϕ′(x) := x ϕ′(y) := x2y



Basis of A

We have dim(A) = 8. A basis is ω1, ω2, ω3, ω4, η1, η2, η3, η4:

ω1 := 1 ω2 :=
1
2
(1 + ιζ2)x + 1

2
(1− ιζ2)x3

ω3 :=
1
2
(1− ιζ2)x + 1

2
(1 + ιζ2)x3 ω4 := x2

and

η1 := y η2 := x3y η3 := x2y η4 := xy

Span(ω1, ω2, ω3, ω4) ∼= K [Z2 × Z2]:

ω1 ω2 ω3 ω4

ω1 ω1 ω2 ω3 ω4

ω2 ω2 ω1 ω4 ω3

ω3 ω3 ω4 ω1 ω2

ω4 ω4 ω3 ω2 ω1



The coalgebra structure and the action

The coalgebra structure is determined by requiring that the

basis elements are group-like:

∆(ωi) = ωi ⊗ ωi ∆(ηj) = ηj ⊗ ηj

The group is G := Z2 × Z2 = {g1, g2, g3, g4}, where

g1 = (0, 0) g2 = (1, 0) g3 = (0, 1) g4 = (1, 1)

g2 = (1, 0) acts by ϕ and g3 = (0, 1) acts by ϕ′.

η1, η2, η3, η4 form one G -orbit.

We have ϕ(ω2) = ω3, so {ω2, ω3} is a G -orbit,

while ω1 = 1 and ω4 = x2 are fixed points.

Note that g3.ωi = ωi .



The coaction on the ωi

ω1 and ω4 are coinvariant:

δ(ω1) = g1 ⊗ ω1 δ(ω4) = g1 ⊗ ω4

Otherwise, we have

δ(ω2) =
1
2
(g1 + g3)⊗ ω2 +

1
2
(g1 − g3)⊗ ω3

δ(ω3) =
1
2
(g1 − g3)⊗ ω2 +

1
2
(g1 + g3)⊗ ω3

Therefore, we have

σA,A(ω2 ⊗ ωi) =
1
2
(g1 + g3).ωi ⊗ ω2 +

1
2
(g1 − g3).ωi ⊗ ω3

= ωi ⊗ ω2

and similarly σA,A(ωj ⊗ ωi) = ωi ⊗ ωj .

This means that Span(ω1, ω2, ω3, ω4) is trivial,

but not completely trivial.



The coaction on the ηj

On G := Z2 × Z2, define a symmetric bilinear form

θ : G × G −→ K×

by requiring that(
θ((1, 0), (1, 0)) θ((1, 0), (0, 1))

θ((0, 1), (1, 0)) θ((0, 1), (0, 1))

)
=

(
ζ2 −1

−1 1

)

For k = 1, 2, 3, 4, we define

δ(ηk) =
1

4

4∑
i ,j=1

θ(g−1
k gi , gj)gj ⊗ ηi



The antipode

SA(ω1) = ω1 SA(ω2) = ω2 SA(ω3) = ω3 SA(ω4) = ω4

SA(η1)=
1
2
(η1 +

1
ζ
η2 + η3 − 1

ζ
η4)

SA(η2) =
1
2
(1
ζ
η1 + η2 − 1

ζ
η3 + η4)

SA(η3) =
1
2
(η1 − 1

ζ
η2 + η3 +

1
ζ
η4)

SA(η4) =
1
2
(−1

ζ
η1 + η2 +

1
ζ
η3 + η4)



The core of η1

Suppose that η := η1.

The formula for SA(η1) shows: We can choose η′ = η1.

Recall from the above theorem:

There are distinct group-like elements ω1, . . . , ωm such that

ηη′ ∈ Span(ω1, . . . , ωm)

m is the smallest number with this property.

In addition, we have

ϕg (η)ψγ(η
′) ∈ Span(ω1, . . . , ωm)

for all g ∈ Q⊥ and all γ ∈ T⊥.

Here we have T = {1} and Q = {ε},
so T⊥ = Ĝ and Q⊥ = G .



From the defining relations:

ηη′ = 1
2
ω1 − ι

2ζ
ω2 +

ι
2ζ
ω3 +

1
2
ω4

More generally:

η1 η2

η1
1
2
ω1 − ι

2ζ
ω2 +

ι
2ζ
ω3 +

1
2
ω4

ζ
2
ω1 +

1
2
ω2 +

1
2
ω3 − ζ

2
ω4

η2
ζ
2
ω1 +

1
2
ω2 +

1
2
ω3 − ζ

2
ω4

1
2
ω1 +

ι
2ζ
ω2 − ι

2ζ
ω3 +

1
2
ω4

η3
1
2
ω1 +

ι
2ζ
ω2 − ι

2ζ
ω3 +

1
2
ω4 − ζ

2
ω1 +

1
2
ω2 +

1
2
ω3 +

ζ
2
ω4

η4 − ζ
2
ω1 +

1
2
ω2 +

1
2
ω3 +

ζ
2
ω4

1
2
ω1 − ι

2ζ
ω2 +

ι
2ζ
ω3 +

1
2
ω4

η3 η4

η1
1
2
ω1 +

ι
2ζ
ω2 − ι

2ζ
ω3 +

1
2
ω4 − ζ

2
ω1 +

1
2
ω2 +

1
2
ω3 +

ζ
2
ω4

η2 − ζ
2
ω1 +

1
2
ω2 +

1
2
ω3 +

ζ
2
ω4

1
2
ω1 − ι

2ζ
ω2 +

ι
2ζ
ω3 +

1
2
ω4

η3
1
2
ω1 − ι

2ζ
ω2 +

ι
2ζ
ω3 +

1
2
ω4

ζ
2
ω1 +

1
2
ω2 +

1
2
ω3 − ζ

2
ω4

η4
ζ
2
ω1 +

1
2
ω2 +

1
2
ω3 − ζ

2
ω4

1
2
ω1 +

ι
2ζ
ω2 − ι

2ζ
ω3 +

1
2
ω4



So the core of η = η1 is Span(ω1, ω2, ω3, ω4).

We have already seen that Span(ω1, ω2, ω3, ω4) is trivial,

but not completely trivial.
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