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1. Introduction

Definition

V = (V, Y,1, ω) is a VOA. g ∈ GL(V ) is called an auto-
morphism of V if

g(1) = 1, g(ω) = ω,

gY (u, z)v = Y (gu, z)gv for any u, v ∈ V.

Aut(V ) is the automorphism group.

d ∈ gl(V ) is called a derivation if

d(1) = d(ω) = 0, dY (u, z)v = Y (du, z)v + Y (u, z)dv

Der(V) is the derivation Lie algebra.
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1. Introduction

This talk
1 The structure of Aut(V )

2 Finite automorphism group G and orbifold theory

3 If V < A is a sub VOA, what is Gal(A/V )?

4 Categorical automorphisms and orbifold theory

Main result

Gal(A/V ) is determined (realized) by the A-modules in the
categorical setting.
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2. Aut(V )

Strongly rational

V is of CFT type if V =
⊕

n≥0 Vn with V0 = C1.
V is rational if V -module category is semisimple.

V is C2-cofinite if dimV/C2(V ) < ∞ where
C2(V ) =< u−2v|u, v > .

V is strongly rational if V is rational, C2-cofinite and of
CFT type

Theorem [Borcherds 1986]

If V is a vertex algebra then V/DV is a Lie algebra with
[u, v] = u0v for u, v ∈ V1 where DV =< u−21|u ∈ V > . In
particular, If V is a vertex operator algebra of CFT type then
V1 is a Lie algebra.
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2. Aut(V )

Theorem [Dong-Mason 2004]

If V is strongly rational then V1 is a reductive Lie algebra.

Conjecture 1

If V is rational and of CFT type then Der(V ) = V1.

Remark

This conjecture is similar to a result in Lie theory: If g is a
finite dimensinal semisimple Lie agebra then Der(g) = g.
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2. Aut(V )

Theorem [Dong-Griess 2002]

If V is finitely generated then Aut(V ) is an algebraic group.

Theorem [Dong-Zhang 2008]

If V is rational then V is finitely generated. In particular,
Aut(V ) is an algebraic group.

We now assume that V is strongly rational. Let N be the
subgroup of Aut(V ) generated by eu0 for u ∈ V1. Then N is
a normal subgroup of Aut(V ).

Conjecture 2

If V is rational and of CFT type then Aut(V )e = N where
Aut(V )e is the maximal connected component of Aut(V ) con-
taining the identity.
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2. Aut(V )

Remark

Conjecture 2 implies that Aut(V )/N is a finite group.

Conjecture 1 and Conjecture 2 are equivalent.

Conjecrure 2 implies that |Aut(V )| < ∞ if V1 = 0.

Conjecture 2 on Aut(V ) is open in general.

Conjectures 1 and 2 are false if V is not rational.

Counter example: Let V be the Heisenberg VOA. Then
C[α(−n)|α ∈ H,n > 0] where H is a finite dimensional
vector space with a nondegenerate symmetric bilinear
form. V is irrational and Aut(V ) = O(H) is an infinite
group and N = {1}.
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2. Aut(V )

Examples

Moonshine VOA V ♮ constructed by Frenkel-Lepowsky-
Meurman (1988) is strongly rational (Dong 1994) and

V ♮
1 = 0. Aut(V ♮) is the Monster simple group (Borcherds

1986, FLM 1988).

Affine VOA Lg(k, 0) associated to finite dimensional sim-
ple Lie algebra is strongly rational (Frenkel-Zhu 1992).
Aut(Lg(k, 0)) ∼= Aut(g) and |Aut(Lg(k, 0))/N | ≤ 3.

Conjecrure 2 is also true for lattice VOA VL associ-
ated with any positive definite even lattice L (Dong-
Nagatomo 1999).
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3. Orbifold theory

Orbifold theory

V is a vertex operator algebra.

G is a finite automorphism group of V.

Orbifold theory: Study the V G-module category.

Twisted modules

Main feature: Appearance of g-twisted V -module: A g-
twisted V -module is not a V -module but restricts to a
V G-module.

Twisted modules are non local modules in category the-
ory (will be discussed further later).
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3. Orbifold theory

Orbifold theory conjecture

(1) If V is rational then V G is rational.
(2) Any irreducible V G-module appears in an irreducible g-
twisted V -module for some g ∈ G [Dijkgrakk-Vafa-Verlinde-
Verlinde 1990].

Stronger conjecture

If U is a conformal subalgebra of V such that V is a finite
sum of irreducible U -modules. Then U is rational iff V is
rational

(Carnahan-Miyamoto 2016) Conjecture (1) is true if G
is solvable and V is C2-cofinite

(McRae 2019) Conjecture (1) is true if V G is C2-cofinite
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3. Orbifold theory

Theorem [Dong-Ren-Xu 2017]

If V G strongly rational then every irreducible V G-module ap-
pears in an irreducible g-twisted V -module for some g ∈ G.
That is, Conjecture (2) follows from Conjecture (1). In par-
ticular, if G is solvable, Orbifold theory Conjecture is solved
completely.
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3. Orbifold theory

V is called holomorphic if V is strongly rational and V is the
only irreducible V -module.

Conjecture[Dijkgraaf-Witten, Dijkgraaf-Pasquier-Roche
1990]

If V is holomorphic VOA and G is a finite automorphism
group of V then there exists α ∈ H3(G,U(1)) such that MV G

is braidedly equivalent to the module category of twisted
Drinfeld double Dα[G].

Theorem [Dong-Ng-Ren 2025]

Dijkgraaf-Witten, Dijkgraaf-Pasquier-Roche conjecture is
true. Moreover, {MV G |V ∈ H} form a group isomorphic to
H3(G,U(1)) with product MV G · MUG = M(V⊗U)G where
H is the collection of all holomorphic VOAs V such that
G < Aut(V ).
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4. Gal(A/V )

Setting

A is a VOA.

V is a sub VOA such that A is a finite sum of irreducible
V -modules.

Question: What can we say about Gal(A/V )?

Theorem [Schur 1911]

If G is a subgroup ofGLn(C) such that every element ofG has
a finite order then G is locally finite (any finitely generated
subgroup is a finite group).
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4. Gal(A/V )

Theorem [Dong-Ng-Ren-Xu 2025]

1 Gal(A/V ) is locally finite.

2 If V is strongly rational, then Gal(A/V ) is a finite group.
In fact, we know how to determine each g ∈ Gal(A/V )
explicitely.

Remark

The proof of (1) uses Schur’s Theorem.

The proof of (2) uses the fusion action (see Li Ren’s talk).

These results hold in (follow from) categorical orbifold
setting.
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5. Categorical automorphisms

Notations

F : Fusion category

Irr(F) : equivalence classes of simple objects

K(F): the fusion algebra over C, which is a semisimple
associative algebra

C : modular tensor category (MTC)

Condensable algebra

A ∈ C is called a condensable algebra:

A is an algebra: mA : A⊗A → A, uA : 1 → A

A is connected: dim C(1, A) = 1

A is commutative: mA = mARA,A where
RA,A : A⊗A → A⊗A is the braidng
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5. Categorical automorphisms

Examples

If G is a finite group, then C[G]∗ is a condensable algebra
in Rep(G) (which is a symmetric braided fusion category
but not a MTC). One can define condensable algebra in
any braided fusion category.

If A is a VOA and V is strong rational conformal sub-
VOA. Then A is a condensable algebra in MV .
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5. Categorical automorphisms

Let A be a condensable algebra in an MTC C.

Automorphisms

An isomorphism σ ∈ C(A,A) is called an automorphism
of A if σuA = uA and mA(σ ⊗ σ) = σmA.

The set of all automorphisms ofA is denoted by AutC(A).

If V is strong rational, A is an extension of V, C = MV ,
then AutC(A) = Gal(A/V ).

Theorem [Dong-Ng-Ren-Xu 2025]

AutC(A) is a finite group.

If V is strong rational, A is an extension of V, then
Gal(A/V ) is a finite group.



Automorphisms
of Vertex
Operator
Algebras

Chongying
Dong

Content

Introduction

Aut(V )

Orbifold
theory

Gal(A/V )

Categorical
automor-
phisms

Categorical
orbifold
theory

5. Categorical automorphisms

Let A be a condensable algebra in a MTC C and we now
determine AutC(A) explicitly.

A-modules

M ∈ C is a left A-module: mM : A⊗M → M .

A-module category CA is a fusion category.

Each X ∈ CA has a dimension dimA(X). For each sub-
category D one can define

dim(D) =
∑

X∈Irr(D)

dA(X)2.

Local A-module category C0
A is a subcategory of CA and

is a MTC.
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5. Categorical automorphisms

A-modules

CA is a C 0
A-module.

CA =
k⊕

i=1

(CA)i, Irr(CA) =
k⋃

i=1

Irr((CA)i)

is the indecomposable C 0
A-modules decomposition of CA

with (CA)1 = C 0
A.

For each i set

gi :=
1

dim(C 0
A)

∑
X∈Irr((CA)i)

dA(X)X
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5. Categorical automorphisms

Theorem [Dong-Ng-Ren-Xu 2025]

There is an action of K(CA) (fusion action) on A such
that Schur-Weyl duality holds:

A = ⊕x∈Irr(C)Wx ⊗ x

where the mutiplicity space Wx = HomC(x,A) is an ir-
reducible K(CA)-module, and Wx

∼= Wy iff x = y.

The kernel of this action is (1− g1)K(CA) and

K(CA) = g1K(CA) + (1− g1)K(CA).

The set B = {gi | i = 1, . . . , k} is a basis of g1K(CA).
If C is pseudounitry, AutC(A) is a finite group. In fact,

AutC(A) = {gi| dim((gi) = 1}.
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6. Categorical orbiford theory

Let A be a condensable algebra in an MTC C.

Twisted A-module

Let g ∈ AutC(A). X ∈ CA is called a g-twisted A-module
if

mA = mA(g ⊗ 1)RX,ARA,X : A⊗X → X

where
mX : A⊗X → X

defines the A-module structure of X in CA and

RA,X : A⊗X → X ⊗A

is the braiding isomorphism.

In the case where A is a VOA, these two definitions of
g-twisted modules coincide.
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6. Categorical orbiford theory

Let G be a finite group.

G-extension

CA is called a G-extension of C0
A if

CA ==
⊕
g∈G

CA(g), Irr(CA) =
⋃
g∈G

Irr(CA(g))

such that CA(1) = C 0
A and CA(g)⊗CA(h) is a subcategory

of CA(gh).
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6. Categorical orbiford theory

Theorem [Dong-Ng-Ren-Xu 2025]

If CA is a G-extension of C0
A, then AutC(A) = G and

CA(g) is the g-twisted A-module category of CA and
AG = 1.

If G = AutC(A) such that AG = 1. Then CA =⊕
g∈G CA(g) is a G-extension of C 0

A where CA(g) is the
g-twisted A-module category.

Statements G = AutC(A) and CA is a G-extension of C 0
A

are equivalent.

Remark

Kirillov (2002) and McRae (2021) studied twisted modules in
category setting. In fact, McRae proved the tesnor product of
a g-twisted module and an h-twisted module is a gh-twisted
module.
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