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Preliminaries

• We characterise double biproducts as ordinary biproducts, and

show that their deformations by 2-cocycles are double wreath

quasi-quantum groups.

• We present examples of 2-cocycles from almost skew pairings

in categories of Yetter-Drinfeld modules and show that various

types of quasi-quantum groups known in the literature are of

this type.

• We define a quasi-Hopf analogue of the Drinfeld-Jimbo

quantum groups Uq(g).
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Bespalov and Drabant showed that the Majid’s double biproduct

construction has a deep categorical nature.

1 Bespalov & Drabant, J. Pure Appl. Alg. 123 (1998), 105–129.

2 Majid, Math. Proc. Camb. Phil. Soc. 125 (1999), 151–192.

4



H a quasi-Hopf algebra

P. Schauenburg (2012) shows that there is a strongly monoidal

equivalence between H
HMH

H and H
HYD, the Drinfeld center of HM

The following three notions are equivalent:

1. a braided Hopf algebra in H
HMH

H

2. a left biproduct quasi-Hopf algebra C × H for some Hopf

algebra C in H
HYD

3. a quasi-Hopf algebra A with a projection π : A → H.

.

5



Explicit structures

• The algebras in H
HMH

H are (left) smash product algebras C#H

between an algebra C in H
HYD and H.

• C#H is the k-vector space C ⊗ H endowed with the

multiplication given by

(c#h)(c ′#h′) = (x1 · c)(x2h1 · c ′)#x3h2h
′,

for all c, c ′ ∈ C and h, h′ ∈ H and unit 1C#H = 1C#1H . We

need only C an algebra in HM, the monoidal category of left

H-modules, in order to get C#H a k-algebra; the algebra

structure of C in H
HYD is needed to regard C#H as an

algebra in H
HMH

H .

6



Some structures

• The coalgebras in H
HMH

H are (left) smash product coalgebras

C >◁ H between a coalgebra C in H
HYD and H, a coalgebra

within the monoidal category HMH of H-bimodules.

• C >◁ H = C ⊗ H as k-vector spaces, with comultiplication

determined by

∆(c >◁ h) = (y1X 1 · c1 >◁ y2Y 1(x1X 2 · c2){−1}x
2X 3

1 h1)

⊗(y31Y
2 · (x1X 2 · c2){0} >◁ y32Y

3x3X 3
2 h2),

for all c ∈ C and h ∈ H, and counit εC>◁H = εC ⊗ εH .
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Explicit structures

• Thus, any bialgebra (resp. Hopf algebra) in H
HMH

H is of the

form C ⊗ H for a certain bialgebra (resp. Hopf algebra) C in
H
HYD, and is denoted by C × H.

• C ×H = C#H as an algebra, C ×H = C >◁ H as a coalgebra

and, moreover, it is a quasi-bialgebra (resp. quasi-Hopf

algebra) with reassociator (resp. antipode) defined by

ΦC×H = 1C × X 1 ⊗ 1C × X 2 ⊗ 1C × X 3,

(s l(c × h) = (1C × S(X 1p11c{−1}h)α)(X
2p12 · SC (c{0})× X 3p2),

1C × α, 1C × β),

for all c ∈ C , h ∈ H, where we wrote c × h in place of c ⊗ h

in order to distinguish the quasi-bialgebra structure on C ⊗ H

given by the left biproduct construction.
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The right handed version

• The algebras in H
HMH

H are the right smash product algebras

H#B between an algebra B in YDH
H and H, where H#B is

H ⊗ B equipped with multiplication and unit given by,

∀ b, b′ ∈ B, h, h′ ∈ H,

(h#b)(h′#b′) = hh′1x
1#(b · h′2x2)(b′ · x3), 1H×B = 1H × 1B

• The coalgebras in H
HMH

H are the right smash product

coalgebras H >◁ B between a coalgebra B in YDH
H and H,

where H ▷< B is H ⊗ B endowed with the comultiplication

and counit determined by

∆(h ▷< b) = (h1X
1
1 x

1Y 1y11 ▷< (b1 · X 2x3)(0) · Y 2y31 )

⊗(h2X
1
2 x

2(b1 · X 2x3)(1)Y
3y2 ▷< b2 · X 3y3), εH×B = εH ⊗ εB ;
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• H × B is the right biproduct of B,H, a quasi-Hopf algebra with

ΦH×B = X 1 × 1B ⊗ X 2 × 1B ⊗ X 3 × 1B ,

(sr (h × b) = (q̃1X 1 × SB(b(0)) · q̃21X 2)(βS(hb(1)q̃
2
2X

3)× 1B),

α× 1B , β × 1B).
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• Let B ∈ YDH
H . Define B ∈ H

HYD as the object B with

structure given by

h · b = b · S−1(h) and

λB(b) = g1S((b · S−1(f 1))(1))f
2 ⊗ (b · S−1(f 1))(0) · S−1(g2).

• If B has an algebra structure in YDH
H then B is an algebra in

H
HYD with multiplication

b • b′ = (b · S−1(f 1))(0)[b
′ · S−1(f 2)(b · S−1(f 1))(1)],

for all b, b′ ∈ B, and unit equals 1B , the unit of B (the

juxtaposition denotes the multiplication of B in YDH
H).

• If B is a coalgebra in YDB
B then B is a coalgebra in H

HYD with

counit equals εB and comultiplication defined, for all b ∈ B,

by

∆B(b) = b1⊗b2 := (b1)(0)·X 2p12S
−1(g1)⊗b2·S−1(g2S(X 1p11)(b1)(1)X

3p2),

where (∆B : B ∋ b 7→ b1 ⊗ b2 ∈ B ⊗ B, εB) is the coalgebra

structure of B in YDH
H .
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The isomorphism

• If B is a (co)algebra in YDH
H then B is a (co)algebra in H

HYD
and the smash product algebras H#B and B#H are

isomorphic.

• A right biproduct quasi-bialgebra (resp. quasi-Hopf algebra) is

always isomorphic to a left biproduct quasi-bialgebra (resp.

quasi-Hopf algebra).

• In any of these situations the isomorphism is given by νB

defined by

νB(b⊗h) = q1g1S(q22g
2
2b(1)2 p̃

2)f 1h1⊗b(0)·S(q21g2
1b(1)1 p̃

1)f 2h2.

• Its inverse is

ν−1
B (h ⊗ b) = (b · x3)(0) · p̃1S−1(h1x

1)⊗ h2x
2(b · x3)(1)p̃2.
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The natural condition

• Assume further that B,C satisfy the compatibility relation

b ⊗ c = b(0) · c{−1} ⊗ b(1) · c{0}, ∀ b ∈ B, c ∈ C .

• It is imposed by the fact that: since Y = C ⊗ H and

X = H ⊗ B are bialgebras (resp. Hopf algebras) in H
HMH

H , the

tensor product algebra and coalgebra structure on

Z := Y ⊗H X afford a bialgebra (resp. Hopf algebra)

structure on Z in H
HMH

H if and only if dY ,X ◦ dX ,Y = IdX⊗HY ,

where d is the braiding of H
HMH

H .

• Let X ,Y be the objects of H
HMH

H defined by the bialgebras

C ∈ H
HYD, and respectively B ∈ YDH

H , as in the above. Then

the following assertions are equivalent:

(i) Z = Y ⊗H X is a bialgebra in H
HMH

H ;

(ii) C ⊗̃B is a bialgebra in H
HYD;

(iii) For all c ∈ C and b ∈ B the preceding relation holds. 13



Double biproduct quasi-Hopf algebras

• Z = Y ⊗H X ≡ Z := C ⊗ H ⊗ B is a k-algebra with

multiplication

(c⊗h⊗b)(c ′⊗h′⊗b′) = (y1·c)(y2h1x1·c ′)⊗y3h2x
2h′1z

1⊗(b·x3h′2z2)(b′·z3).

The unit of Z is 1C ⊗ 1H ⊗ 1B , i.e. as a k-algebra

Z = C#H#B, the two-sided smash product algebra of C ,B

and H1.

• Z is an H-bimodule coalgebra with comultiplication given by

∆Z (c ⊗ h ⊗ b) = [(c >◁ h)1 · Y 1
1 t

1Z 1u11 ⊗ (b1 · Y 2t3)(0) · Z 2u12 ]

⊗[(c >◁ h)2 · Y 1
2 t

2(b1 · Y 2t3)(1)Z
3u2 ⊗ b2 · Y 3u3]

= [y1X 1 · c1 ⊗ y2T 1(z1X 2 · c2){−1}z
2X 3

1 · (h ▷< b)1]

⊗[y31T
2 · (z1X 2 · c2){0} ⊗ y32T

3z3X 3
2 · (h ▷< b)2],

and counit εZ = εC ⊗ εH ⊗ εB .
1Bulacu, Panaite, Van Oystaeyen, Comm. Math. Phys. 266 (2006)
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Double biproduct quasi-Hopf algebras

• We denote this coalgebra structure on Z by C >◁ H ▷< B.

• C × H × B := C#H#B as an algebra.

• C × H × B := C >◁ H >◁ B as a coalgebra.

• C ×H ×B is a quasi-bialgebra with reassociator 1C ×Φ× 1B ,

and

• a quasi-Hopf algebra with antipode

s(b × h × c) = (1C × S(Y 1(z1x1 · c){−1}z
2x21h(1,1)y

1
1X

1
1 t

1p1)α× 1B)

(SC (Y
2 · (z1x1 · c){0})× Y 3z3x22h(1,2)y

1
2X

1
2 t

2

×SB((b · y3)(0) · X 3t3))(1C × p2S(x3h2y
2(b · y3)(1)X 3)× 1B),

and distinguished elements 1C × α× 1B and 1C × β × 1B .
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Double biproducts are biproducts

• C × H × B ≡ (C ⊗̃B)#H as an algebra;

• C × H × B ≡ (C ⊗̃B) >◁ H as a coalgebra;

• C × H × B ≡ (C ⊗̃B)× H as a quasi-Hopf algebra.

• In all these cases the isomorphism is produced by χ defined by

χ(c⊗h⊗b) = (y1·c⊗̃(b·x3)(0)·p̃1S−1(y2h1x
1))⊗y3h2x

2(b·x3)(1)p̃2.
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2-cocycles in braided categories

• A 2-cocycle of a braided bialgebra A in (C, c) is a morphism

τ : A⊗ A → 1 in C obeying τ(η
A
⊗ IdA) = εA = τ(IdA ⊗ η

A
)

and

A A A����
τ 
	

τ

1

=

A A A����
τ 
	

τ

1

,where τ =

A A

τ

1

and for simplicity we assumed C strict monoidal.

• A 2-cocycle τ of a bialgebra A in (C, c) is called invertible if it

is convolution invertible
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2-cocycles in braided categories

• Let τ be an invertible 2-cocycle of the bialgebra A.

• Aτ is the coalgebra A with unit η
A
and multiplication

mτ
A :=

A A�� ��
��

τ ��

	 τ

A

.

• Aτ is a bialgebra in C and, moreover, a Hopf algebra with

Sτ
A := (uτ ⊗SA⊗uτ )(IdA⊗∆A)∆A, provided that so is A SA;

• uτ := τ(IdA ⊗ SA)∆A : A → 1, and similar for uτ .
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Theorem
(F , φ2, φ0) : (C, c) → (D, d) is a braided functor, A a bialgebra in

C.

(i) The map Ψ : HomC(A⊗ A, 1) → HomD(F(A)⊗F(A), I )

sending τ to

τF : F(A)⊗F(A)
φ2,A,A−→ F(A⊗ A)

F(τ)−→ F(1)
φ−1
0−→ I ,

is a morphism of monoids.

If τ : A⊗A → 1 is a 2-cocycle of A then τF is a 2-cocycle of F(A).

(ii) If F is, moreover, a braided equivalence then Ψ is an

isomorphism of monoids, so any 2-cocycle of F(A) equals τF for a

certain 2-cocycle τ of A in C. Furthermore, τ is invertible if and

only if so is τF , and F(Aτ ) = F(A)τF as bialgebras in D.
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The ideal case

Theorem
Let A ∈ H

HYD be a bialgebra (resp. Hopf algebra) and

ϑ : Fl(A)⊗H Fl(A) → H an invertible 2-cocycle of Fl(A) := A⊗H

in H
HMH

H . Then there exists an invertible 2-cocycle ϑ̃ of A in H
HYD

such that Fl(A)ϑ = Fl(Aϑ̃
) as bialgebras (resp. Hopf algebras) in

H
HMH

H . Consequently, if (A× H)ϑ is the quasi-bialgebra (resp.

quasi-Hopf algebra) corresponding to the bialgebra (resp. Hopf

algebra) Fl(A)ϑ in H
HMH

H then (A× H)ϑ = A
ϑ̃
× H as

quasi-bialgebras (resp. quasi-Hopf algebras).

• When K = R × H, one can work over H; K is a bimonoid in

HMH , and for such a context a theory of 2-cocycles and

deformations produced by them exists.
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The bimonoid case

• If i : H → K is a quasi-Hopf algebra morphism, K is an

algebra in HMH via mK and i .

• A normalized 2-cocycle of K is an H-bilinear morphism

ω : K ⊗H K → k s.t. ω(1K ⊗H x)=ω(x ⊗H 1K )=εK (x),

ω(x1 ⊗H y1)ω(x2y2 ⊗H z)=ω(y1 ⊗H z1)ω(x ⊗H y2z2).

• For K = R × H, owing to 2, giving an (invertible) normalized

2-cocycle σ on R × H is equivalent to giving an (invertible)

normalized left H-linear morphism ϑ : R⊗̃R → k obeying

ϑ((s⊗̃t)1)ϑ(r⊗̃mA((s⊗̃t)2) =

ϑ((x1 · r⊗̃x2 · s)1)ϑ(mA((x
1 · r⊗̃x2 · s)1)⊗̃t).

• R⊗̃R is R ⊗ R with the braided monoidal algebra, coalgebra

structure given by the tensor product of R and itself in H
HYD.

2Bulacu, Popescu, T., Double wreath quasi-Hopf algebras, J. Algebra (2025)
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2-cocycles for double biproducts C × H × B

• We consider almost (invertible) normalized 2-cocycles on

C ⊗̃B in H
HYD of the form ϑ = εC ⊗ Σ⊗ εB for a suitable

k-linear Σ : B⊗̃C → k .

• We replace B by an arbitrary bialgebra A in H
HYD such that

the tensor product algebra and coalgebra structures afford on

C ⊗ A a braided bialgebra structure, denoted by C ⊗̃A.

Theorem
ϑ is an almost (invertible) normalized 2-cocycle iff Σ : A⊗ C → k

is left H-linear (convolution invertible in HM), and

Σ(1A⊗̃c) = εC (c) , Σ(a⊗̃1C ) = εA(a);

Σ(aa′⊗̃c) = Σ(X 1 · a⊗̃x3X 3
2 · c2)Σ(x1X 2 · a′⊗̃x2X 3

1 · c1);
Σ(a⊗ cc ′) = Σ(y1X 1x11 · a1⊗̃y2(X 2x12 · a2)[−1]X

3x2 · c)
Σ(y3 · (X 2x12 · a2)[0]⊗̃x3 · c ′).
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2-cocycles for double biproducts

When we take A = B as bialgebra in H
HYD, keeping in mind the

bialgebra structure of B, an almost dual skew pairing between B,

C is a k-linear morphism Σ : B ⊗ C → k satisfying

Σ(b · S−1(h1)⊗ h2 · c) = ε(h)Σ(b ⊗ c),

Σ(1B ⊗ c) = εC (c),Σ(b ⊗ 1C ) = εB(b);

Σ(b(0)(b
′ · b(1)), c) = Σ(b · S−1(X 1g1)⊗ x3X 3

2 · c2)
Σ(b′ · S−1(x1X 2g2)⊗ x2X 3

1 · c1);
Σ(b ⊗ cc ′) = Σ

(
(b1)(0) ·Y 2p12S

−1(y1X 1x11G
1)⊗

y2g1S((b2 ·S−1(f 1X 2x12G
2S(Y 1p11)(b1)(1)Y

3p2))(1))f
2X 3x2 · c

)
Σ
(
(b2 ·S−1(f 1X 2x12G

2S(Y 1p11)(b1)(1)Y
3p2))(0) ·S−1(y3g2)

⊗x3 · c ′
)
.
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2-cocycles for double biproducts

• Moving backwards, Σ : B ⊗ C → k defines ϑ that defines ω,

the later being a normalized invertible 2-cocycle on

(C ⊗̃B)× H over H, Explicitly,

ω : ((C ⊗̃B)× H)⊗H ((C ⊗̃B)× H) → k is given by

ω((c⊗̃b)× h ⊗H (c ′⊗̃b′)× h′) = ε(h′)ϑ(c⊗̃b ⊗ h · (c ′⊗̃b′))

= ε(h′)εB(b
′)Σ(b ⊗ h · c ′),

for all b′ ∈ B, c, c ′ ∈ C and h, h′ ∈ H.

• At a first sight is quite impossible to find such a Σ. But, using

the quasi-Hopf algebra isomorphism

χ : C × H × B → (C ⊗̃B)× H one can see that the Σ’s are in

a one to one correspondence to certain H-balanced morphisms

σ : B ⊗ A → k , morphisms that can be determined much

more easily.
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2-cocycles for double biproducts

Theorem
Let H be a quasi-Hopf algebra, C ∈ H

HYD and B ∈ YDH
H braided

Hopf algebras, and B the braided Hopf algebra in H
HYD associated

to B. Then there is a one to one correspondence between:

(i) almost (invertible) dual skew parings Σ : B ⊗ C → k, and

(ii) H-balanced morphisms σ : B ⊗ C → k satisfying

σ(b ⊗ cc ′) = σ(b1 ⊗ a)σ(b2 ⊗ a′),

σ(bb′ ⊗ c) = σ(b ⊗ b′(1) · c2)σ(b
′
(0) ⊗ c ′1).

(C × H × B)σ̂ and ((C ⊗̃B)× H)ω are isomorphic quasi-Hopf

algebras.
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Double biproduct quasi-Hopf algebras of dimension 32

• H±(8) are the quasi-Hopf algebras introduced in 3.

• As k-algebras, H±(8) are unital, generated by g , x with

relations g2 = 1, x4 = 0 and gx = −gx .

• The (non-coassociative) coalgebra structures of H±(8) are

given by

∆(g) = g ⊗ g , ε(g) = 1,

∆(x) = x ⊗ (p+ ± ip−) + 1⊗ p+x + g ⊗ p−x , ε(x) = 0,

extended as algebra morphisms, where p± = 1
2(1± g).

• {gaxb | 0 ≤ a ≤ 1, 0 ≤ b ≤ 3} is a common basis for H±(8),

two quasi-Hopf algebras with reassociator

Φ = 1⊗ 1⊗ 1− 2p− ⊗ p− ⊗ p− and antipode defined by

S(g) = g , S(x) = −x(p+ ± ip−), extended as an anti-algebra

morphism, and distinguished elements α = g and β = 1.
3P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of

codimension 2, Math. Res. Lett. 11 (2004), 685–696.
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Double biproduct quasi-Hopf algebras of dimension 32

• H±(8) contain H(2) as a quasi-Hopf subalgebra.

• H(2) is the group algebra of k and the cyclic group ⟨g⟩, a
2-dimensional quasi-Hopf algebra with coalgebra structure,

reassociator Φ and antipode (S , α, β) given by the same

relations as in the case of H±(8).

• The biproduct quasi-Hopf algebras that identify to H±(8) as

quasi-Hopf algebras are defined by the following braided Hopf

algebras R± ∈ H(2)
H(2)YD.

• As vector spaces, R± are generated by 1, u± := (p− ± ip+)x ,

v := gx2 and w± := (p− ∓ ip+)x
3, and are Yetter-Drinfeld

modules over H(2) with structures defined by

g ▷ 1 = 1, g ▷ u± = −u±, g ▷ v = v , g ▷ w± = −w±;

1 7→ 1⊗ 1, u± 7→ (p+ ± ip−)⊗ u±, v 7→ 1⊗ v and

w± 7→ (p+ ± ip−)⊗ w±. 27



Double biproduct quasi-Hopf algebras of dimension 32

• R± are unital braided algebras with unit 1 and multiplication •
determined by

u± • u± = ∓iv , u± • v = w±, v • u± = −w±,

u± • w± = v • v = v • w± = w± • u± = w± • v = w± • w± = 0,

• and counital braided coalgebras with counits ε± and

comultiplications ∆± given by ε±(1) = 1,

ε±(u±) = ε±(v) = ε±(w±) = 0,

∆±(u±) = 1⊗ u± + u± ⊗ 1,

∆±(v) = v ⊗ 1 + 1⊗ v − ω∓u± ⊗ u±, where ω∓ := 1∓ i , and

∆±(w±) = w± ⊗ 1 + 1⊗ w± ± iu± ⊗ v ∓ iv ⊗ u±.

• Finally, the braided antipode S± of R± is characterized by

S±(1) = 1, S±(u±) = −u±, S±(v) = ±iv , S±(w±) = ±iw±.

28



Double biproduct quasi-Hopf algebras of dimension 32

• For Take C = R+ and B = R−, by using the structures of

C ,B in
H(2)
H(2)YD, one can check easily that

cR+,R− ◦ cR−,R+ = IdR−⊗R+ (c is the braiding of
H(2)
H(2)YD).

• Thus R := R+⊗̃R− is a braided Hopf algebra in
H(2)
H(2)YD and

R × H(2), a 32-dimensional quasi-Hopf algebra, identifies to a

double biproduct quasi-Hopf algebra.

• The 2-cocycles of R × H defined by an almost dual pairing Σ

between R− and R+ are parametrized by a ∈ k, since the only

non-zero values of Σ are Σ(1⊗ 1) = 1, Σ(u− ⊗ u+) = a,

Σ(v ⊗ v) = −ω+a
2 and Σ(w− ⊗ w+) = −ω−a

3.

• Having Σ, we have a 2-cocycle ω on R × H, and therefore we

can apply the bosonization process to R × H and ω.
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Quasi free (left) Yetter-Drinfeld datum

Let H be a quasi-Hopf algebra with bijective antipode.

Definition
A quasi free (left) Yetter-Drinfeld datum over H (free YD-datum

for short) is a triple ((ei )i∈I , (χi )i∈I ,R) consisting of a family of

elements (ei )i∈I indexed by a non-empty set I , a family of

characters (χ)i∈I of H indexed by I and an element R ∈ H ⊗ H

satisfying (IdH ⊗ ε)(R) = 1 and

(Id⊗∆)(R) = (Φ231)
−1R13Φ213R12(Φ123)

−1

= x3R1X 2r1y1 ⊗ x1X 1r2y2 ⊗ x2R2X 3y3, (1)

∆op(h)R = R∆(h)

i .e. h2R
1 ⊗ h1R

2 = R1h1 ⊗ R2h2, ∀ h ∈ H, (2)

where R = R1 ⊗ R2 = r1 ⊗ r2 are two copies of R.
30



• Note that the three conditions imposed to the above R ∈ H ⊗ H

are part of the definition of an R-matrix for H. Thus, a couple

(H,R) with R ∈ H ⊗ H obeying ε(R2)R1 = 1, (0.1) and (0.2) will

be called in what follows a (left) semi-quasitriangular quasi-Hopf

algebra (semi-QT for short). Also, we say that R is a (left) semi

R-matrix for H.

• A semi R-matrix for H is always invertible, provided that S is

bijective. As in the quasitriangular case, one can see that the

inverse of R is given by

R−1 := q̃2y22R
1p1 ⊗ y3S−1(q̃1y21R

2p2)y1 (3)

= q̃21X
1R1p1 ⊗ q̃22X

3S−1(q̃1X 1R2p2). (4)
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Lemma

Giving a left Yetter-Drinfeld module structure on a one dimensional

vector space is equivalent to giving a pair (χ,K) consisting of a

character χ of H and an element K ∈ H such that ε(K) = 1,

χ(h2)h1K = χ(h1)Kh2, for all h ∈ H, and

∆(K) = χ(x3X 2y1)x1X 1Ky2 ⊗ x2KX 3y3. (5)

Corollary

If H possess a semi R-matrix R, any character χ of H determines a

left Yetter-Drinfeld module structure on each one dimensional

vector space.
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Denote by YD1 the set of pairs (K, χ) consisting of an element

K ∈ H and a character χ of H such that, for all h ∈ H,

∆(K) = χ(x3X 2y1)x1X 1Ky2 ⊗ x2KX 3y3

χ(h2)h1K = χ(h1)Kh2

ε(K) = 1

(6)
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Lemma

For (K1, χ1), (K2, χ2) ∈ YD1, define

(K1, χ1)∗(K2, χ2) := (χ1(X
2x1Y 1)χ2(X

3x3Y 2)X 1K1x
2K2Y

3, χ1χ2).

Then, the following assertions hold:

(i) The operation ∗ is an associative product in YD1;

(ii) (1, ε) is a neutral element of YD1, and with respect with it any

element (K, χ) is invertible, with inverse given by (K−1, χ−1),

where χ−1 is the (convolution) inverse of χ and

K−1 := χ(f 2g1)S−1(f 1Kg2), (7)

where f = f 1 ⊗ f 2 is the Drinfeld twist and g = g1 ⊗ g2 is its

inverse;

(iii) (YD1, ∗) is a commutative group.
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• Let E = (ei )i be a family of elements indexed by an non-empty

set I and (χi )i∈I a family of characters of H.

• A (left) quasi-word in alphabet E is a sequence

w = w(i1, · · · , in) := ei1(ei2(ei3 · · · (ein−1ein) · · · ))

with n a non-zero natural number (called in what follows the

length of w) and i1, · · · , in ∈ I ; we include also the empty word ∅.

• The presence of the parenthesis is justified by the fact that the

algebra we want to built might be non-associative, as for an algebra

in H
HYD the associativity of the multiplication is controlled by the

associativity constraint of H
HYD, and thus by the reassociator Φ.
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We define the (left) quasi-free k-algebra on the set E , denoted by

k{(E}, as being the k-vector space with basis the all (left)

quasi-words in alphabet E , including the empty word ∅; the
multiplication between two non-empty quasi-words w and

w ′ = w(i ′1, · · · , i ′m) = ei ′1(ei ′2(ei ′3 · · · (ei ′m−1
ei ′m) · · · )) is a scalar

multiple of the ”concatenation” of the two quasi-words,

ww ′ = κw(i1, · · · , in, i ′1, · · · , i ′m) = κei1(ei2 · · · (ein−1(ein(ei ′1(· · · (ei ′m−1
ei ′m) · · · )))) · · · ),

with the scalar κ determined by the following rule:

(ei1ei2)ei3 = χi1(X
1)χi2(X

2)χi3(X
3)ei1(ei2ei3), ∀ i1, i2, i3 ∈ I , (8)

extended to arbitrary non-empty quasi-words by considering

χw(i1,··· ,in) := χi1(χi2 · · · (χin−1χin) · · · ); more generally, if the order

of the parenthesis in a concatenation is not the standard one then

we adapt the definition of χ associated to concatenation

accordingly. The unit is the empty word.
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Proposition

Let H be a quasi-Hopf algebra, E = (ei )i∈I a family of elements

and (Ki , χi )i∈I a family with elements in YD1. Then k{(E} admits

a unique algebra structure in H
HYD such that, for all h ∈ H and

i ∈ I ,

h · ei = χi (h)ei and λ(ei ) = Ki ⊗ ei , (9)

where λ is the left coaction of H on k{(E}.

Lemma

Let ι : E ↪→ k{(E} be the inclusion map and A an algebra in H
HYD.

Then, for any map f : E → A obeying, for all h ∈ H and i ∈ I ,

χi (h)f (ei ) = h · f (ei ) and Ki ⊗ f (ei ) = f (ei )[−1] ⊗ f (ei )[0], (10)

there exists a unique morphism f : k{(E} → A of algebras in H
HYD

such that f ι = f .
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• For any 1 ≤ s ≤ n, denote by Ss,n−s the set of (s, n− s)-shuffles,

that is the set of permutations σ ∈ Sn for which σ(1) < · · · < σ(s)

and σ(s + 1) < · · · < σ(n).

• It is well-known that Ss,n−k has
(n
s

)
elements, so Sn contains in

total 2n shuffles; we included also S0,n := {e} = Sn,0, e being the

identical permutation of Sn.

• For σ ∈ Sn, we denote by Inv(σ) the set of inversions of σ; by

convention, if (u, v) ∈ Inv(σ) then u < v , and so σ(u) > σ(v).

38



Proposition

There is a unique coalgebra structure (∆, ε) on k{(E} in H
HYD

such that the comultiplication ∆ is a morphism of algebras in
H
HYD and ∆(ei ) = ei ⊗ 1+ 1⊗ ei , for all i ∈ I . Furthermore, for

any quasi-word w = w(i1, · · · , in) we have

∆(w) =
n∑

s=0

∑
σ∈Ss,n−s

n∏
u=1

 ∏
(u,v)∈Inv(σ−1)

χiv

(
Kiu

)
w(iσ(1), · · · , iσ(s))⊗ w(iσ(s+1), · · · , iσ(n)),

(11)

and the counit ε is a morphism of algebras in H
HYD determined by

ε(ei ) = 0, for all i ∈ I . Consequently, k{(E} is a bialgebra in H
HYD.
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Theorem
Let E = (ei )i∈I be a family of elements and (Ki , χi )i∈I a family of

elements of YD1. Then, the (left) quasi-free algebra on the set E ,
k{(E} is a braided Hopf algebra in H

HYD with the following

structure:

• k{(E} is a left Yetter-Drinfeld module with H-action defined by

h · 1 = ε(h)1 and h · w(i1, ·, in) = χw (h)w(i1, · · · , in), for all h ∈ H

and non-empty quasi-word w(i1, · · · , in), and H-coaction

determined by 1 7→ 1⊗ 1 and w = w(i1, · · · , in) 7→ Kw ⊗ w;

• the multiplication m of k{(E} is given by (8) and the unit is the

empty word 1;

• the comultiplication ∆ of k{(E} is defined by ∆(1) = 1⊗ 1 and

(11), while the counit ε of k{(E} is defined by ε(1) = 1 and

ε(w) = 0, for any non-empty quasi-word w;
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Theorem (Continued)
• the braided antipode S of k{(E} is determined by S(1) = 1,

S(ei ) = −ei , S(ei1ei2) = χi2(K1)ei2ei1 and

S(w) = (−1)n
( n∏

j=2

χij · · ·χin(Kij−1
)

)( n∏
j=3

χij (X
1)χij−1

· · ·χi2(X
2)χi1(X

3)

)
w(in, · · · , i1)

(12)

for any non-empty quasi-word w = w(i1, · · · , in) of length n ≥ 3.
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Corollary
Let H and {(Ki , χi )}i∈I as previously. Given a family of symbols

E = (Ei )i∈I , the biproduct quasi-Hopf algebra e, associated to the

braided Hopf algebra k{(E}, admits the following presentation:

• Algebra Structure: As a unital associative algebra, e is

generated by the family {Ei}i∈I and H, subject to the

relations:

hEi = χi (h1)Eih2

for all i ∈ I and h ∈ H.

• Coalgebra Structure: The comultiplication ∆e and the

counit εe are determined by:

∆e(Ei ) = χi (x
1)Eix

2 ⊗ x3 + χi (X
2x1)X 1Kix

2 ⊗ EiX
3x3,

∆e(h) = ∆(h),
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Corollary (continued)
and

εe(Ei ) = 0, εe(h) = ε(h),

for all i ∈ I and h ∈ H. These maps are extended to all of e as

algebra homomorphisms.

• Antipode: The antipode Se is defined by:

Se(Ei ) = −χi (X
1p12)S(X

1p11Ki )αEiX
3p2 and Se(h) = S(h),

for all i ∈ I and h ∈ H, extended as an algebra

anti-homomorphism.

• Quasi-Hopf Structure: The Drinfeld associator and the

distinguished elements α, β coincide with those of H.
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The right version of the quasi free algebra

Consider F = (fj)j∈J a family of elements indexed by a non-empty

set J and (χj)j∈J a family of characters of H. For any j ∈ J, kfj as

a right H-module via the action given by χj : fj · h = χj(h)fj , for all

h ∈ H. Then, kfj is, moreover, a right Yetter-Drinfeld module over

H if and only if there exists an element Gi in H such that,

∆(Gj) = χj(y
3X 2x1)y1X 1Gjx

2 ⊗ y2GjX
3x3,

χj(h1)Gjh2 = χj(h2)h1Gj ,

ε(Gj) = 1, (13)

for all h ∈ H. Denote by YD′
1 the set of couples (G, χ) with χ a

character of H and G an element of H satisfying (13). YD′
1 is a

commutative group under the law of composition

(G1, χ1)(G2, χ2) = (G1 ⋄G2, χ1χ2), where

G1 ⋄G2 := χ1(X
2x1Y 1)χ2(X

3x3Y 2)X 1G1x
2G2Y

3.
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A right quasi-word in alphabet F is a sequence

v = v(j1, · · · , jn) := ((· · · ((fj1fj2)fj3) · · · )fjn−1)fjn with n a non-zero

natural number (called the length of v) and j1, · · · , jn ∈ J; we

include also the empty word ∅.

We define the right quasi-free k-algebra on the set F , denoted by

k{F)}, as being the k-vector space with basis the all right

quasi-words in alphabet F , including the empty word ∅; the
multiplication between v and

v ′ = v(j ′1, · · · , j ′m) = (· · · ((fj ′1fj ′2)fj ′3) · · · fj ′m−1
)fj ′m is a scalar multiple

of the ”concatenation” of the two quasi-words,

vv ′ = κ′v(j1, · · · , jn, j ′1, · · · , j ′m) =
κ′(· · · (((· · · (fj1fj2) · · · fjn−1)fjn)fj ′1) · · · fj ′m−1

)fj ′m , (14)

with the scalar κ′ determined by the following rule:

(fj1fj2)fj3 = χj1(x
1)χj2(x

2)χj3(x
3)fj1(fj2fj3), ∀ j1, j2, j3 ∈ J. (15)
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To perform the double biproduct we need the compatibility

relation, if C = e is the Hopf algebra in H
HYD and B = f is the

Hopf algebra in YDH
H then for all b ∈ B and c ∈ C ,

b ⊗ c = b(0) · c[−1] ⊗ b(1) · c[0].

Thus, for our structures and b = v , c = w , the above condition

specializes as v ⊗ w = χv (Kw )χw (Gv )v ⊗ w . Hence, me must

have χv (Kw )χw (Gv ) = 1, for all v and w . This is equivalent to

χj(Ki )χi (Gj) = 1, for all (i , j) ∈ I × J.

This is satisfied working with Ki ’s and the Gj ’s defined by an

R-matrix of H, since Kw = χw (R
1)R2 and Gv = χv (R

2
)R

1
, and

therefore

χv (Kw )χw (Gv ) = χw (R
1)χv (R

2)χv (R
2
)χw (R

1
)

= χw (R
1R

1
)χv (R

2R
2
) = 1,

as needed.
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Proposition
Suppose that e and f are compatible, in the sense that

χj(Ki )χi (Gj) = 1, for all (i , j) ∈ I × J. Then, the double biproduct

quasi-Hopf algebra of e and f over H, denoted by

DBH(e, f) = e× H × f, can be described as follows:

• as an associative algebra, DBH(e, f) is unital, generated by the

elements Ei ’s, Fj ’s and H with relations

hEi = χi (h1)Eih2, Fjh = χj(h2)h1Fj , EiFj = Fj ,

for all (i , j) ∈ I × J and h ∈ H;

• the quasi-coalgebra structure of DBH(e, f) is defined by

∆(Ei ) = χi (x
1)Eix

2 ⊗ x3 + χi (X
2x1)X 1Kix

2 ⊗ EiX
3x3, ε(Ei ) = 0,

∆(Fj) = χj(x
3)x1 ⊗ x2Fj + χj(x

3X 2)x1Fj ⊗ x2GjX
3, ε(Fj) = 0,

for all (i , j) ∈ H, and the restriction of ∆ (resp. ε) to H equals the

comultiplication of H (resp. the counit of H);
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Proposition (Continued)
• with the above strutures DBH(e, f) is a quasi-bialgebra with

reassociator Φ and, moreover, a quasi-Hopf algebra with antipode

S given by the distinguished elements α, β and

S(Ei ) = −χi (X
1p12)S(X

1p11Ki )αEiX
3p2,

S(Fj) = −χj(q̃
2
1X

2)q̃1X 1FjβS(Gj q̃
2
2X

3),

for all i ∈ I and j ∈ J, extended as an anti-morphism of algebras

and such that its restriction to H equals S.
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A double biproduct can be always identified, up to an isomorphism,

with a left (or right) biproduct. The first step is to associate to f,

a braided Hopf algebra f in H
HYD.

Proposition
f = f as a vector space, and a braided Hopf algebra in H

HYD with

structure given by:

• f is a left H-module with action defined by h · fj = χ−1
j (h)fj ,

for all h ∈ H, extended to the whole space f by using

h · (bb′) = (h1 · b)(h2 · b′), and a left YD-module over H with

coaction determined by fj 7→ G−1
j ⊗ fj , for all j ∈ J, extended

to the whole space f as an algebra morphism, by using

(bb′)[−1] ⊗ (bb′)[0] = X 1(x1Y 1 · b)[−1]x
2(Y 2 · b′)[−1]Y

3 ⊗
(X 2 · (x1Y 1 · b)[0])(X 3x3 · (Y 2 · b′)[0]);

• the multiplication of f is given by the multiplication f as

follows: vv ′ = χ−1
v (S(Gv )f

1)χ−1
v ′ (f 2)vv ′, for all v and v ′,

where v is v viewed in f instead of f and similar for v ′;

• the remaining structures are the same as those of f.
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We denote by AH(e, f) the space e⊗ f endowed with the tensor

product algebra and coalgebra structure of e and f in H
HYD. As we

assumed that the compatibility relation holds, AH(e, f) is a braided

Hopf algebra in H
HYD. The associated biproduct quasi-Hopf

algebra AH(e, f)× H has the following structure:

Algebra structure
A an algebra is generated by the elements (Ei )i∈I , (F j)j∈J and H

subject to the relations hEi = χi (h1)Eih2, hF j = χ−1
j (h1)F jh2 and

F jEi = χ−1
j (X 2x1)χi (X

1x2G−1
j )EiF jX

3x3, for all (i , j) ∈ I × J

and h ∈ H.
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Comultiplication and counit

∆(Ei ) = χi (x
1)Eix

2 ⊗ x3 + χi (X
2x1)X 1Kix

2 ⊗ EiX
3x3,

∆(F j) = χ−1
j (x1)Fjx

2 ⊗ x3 + χ−1
j (X 2x1)Y 1G−1

j x2 ⊗ FjX
3x3,

ε(Ei ) = 0, ε(F j) = 0,

for all (i , j) ∈ I × J, and on H they reduce to the comultiplication

and the counit of H;

Antipode

S(Ei ) = −χi (X
1p12)S(X

1p11Ki )αEiX
3p2,

S(F j) = −χ−1
j (X 2p12)S(X

1p11G
−1
j )αF jX

3p2.
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Serre’s relations

Let (H,R) be a QT quasi-Hopf algebra and q a non-zero scalar.

Denote by Ie (resp. If) the ideal of e (resp. f) generated by

{eiej − ejei | i ̸= j s.t. χi (R
1)χj(R

2) = χj(R
1)χi (R

2) = 1}
∪{ei (eiej)− [2]ei (ejei ) + χi (x

1x3)χj(x
2)eje

2
i | i ̸= j s.t.

χi (R
1R2) = q2, χi (R

1)χj(R
2) = χj(R

1)χi (R
2) = q−1}

({fi fj − fj fi | i ̸= j s.t. χi (R
1
)χj(R

2
) = χj(R

1
)χi (R

2
) = 1}

∪{χi (x
1x3)χj(x

2)fi (fi fj)− [2](fi fj)fi + (fj fi )fi | i ̸= j s.t.

χi (R
1
R
2
) = q2, χi (R

1
)χj(R

2
) = χj(R

1
)χi (R

2
) = q−1}),

where [2] = q + q−1.
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• Then Ie (resp. If) is a braided Hopf ideal in e (resp. f), and we

can consider the quotient braided Hopf algebra e′ = e
Ie

(resp.

f′ = f
If
).

• When we perform the double biproduct quasi-Hopf algebra

e′ ×H × f′ we have for it a similar description as for e×H × f, with

mention that the relations amoung the algebra generators are

enriched with the two sets of Serre relations described above.
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2-cocycle deformation

Let A (for us e′) be a Hopf algebra in H
HYD and B (for us f′) a

Hopf algebra in YDH
H . Two cocycles for A× H × B are produced

by linear maps σ : B ⊗ A → k satisfying the usual unital conditions

and

σ(b · h ⊗ a) = σ(b ⊗ h · a), (16)

σ(b ⊗ aa′) = σ(b1 ⊗ a)σ(b2 ⊗ a′), (17)

σ(bb′ ⊗ a) = σ(b ⊗ b′(1) · a2)σ(b
′
(0) ⊗ a1), (18)

for all h ∈ H, a, a′ ∈ A and b, b′ ∈ B. More exactly,

σ̂ : (A× H × B)⊗H (A× H × B) → k defined by

σ̂(a× h × b ⊗H a′ × h′ × b′) = εA(a)σ(a⊗ h · b)ε(h′)εB(b′) is a
2-cocycle for A× H × B.
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• For us, σ as above are defined by

σ(fj ⊗ ei ) = δχi ,χj
ϖi .j ,

• (A× B × H × B)σ̂ has the same quasi-coalgebra structure as

A× H × B, but the algebra structure changes as follows

(i ∈ I , j ∈ J, h ∈ H):

hEi = χi (h1)Eih2 (19)

hFj = χj(h2)h1Fj , (20)

[Fj ,Ei ] = (χi (R
2
)R

1 − χi (R
1)R2)δχi ,χj

ϖi ,j . (21)

• The antipode changes accordingly.
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Drinfeld-Jimbo quasi-quantum groups

• Let (I , ·) be a Cartan datum. Here (Z[I ],+) is the free abelian

group with basis {i , i ∈ I}. The elements of Z[I ] are denoted by

{Kν , ν ∈ Z[I ]}; then KµKν = Kµ+ν , so K0 is the neutral element

of Z[I ], and K−1
µ = K−µ, for all µ, ν ∈ Z[I ].

• We assume I to be finite just to have an R-matrix for the Hopf

algebra of functions associated to Z[I ], kZ[I ]. Actually, it its
well-known that RI =

∑
µ,ν∈Z[I ] q

µ·νPµ ⊗ Pν is an R-matrix for

kZ[I ], where (Pµ)µ∈Z[I ] is the basis of kZ[I ] dual to the basis

(Kµ)µ∈Z[I ] of k[Z[I ]].

• We don’t have non-trivial abelian 3-cocycles for the group Z[I ],
and therefore no quasitriangular structures in the quasi-Hopf sense

for kZ[I ]. Therefore, we have to tensorize kZ[I ] with a

quasitriangular quasi-Hopf algebra (H,R).
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For (H,R) as above, set H = kZ[I ] ⊗ H, a QT quasi-Hopf algebra

with R-matrix R given by

R := R1
I ⊗ R1 ⊗ R2

I ⊗ R2.

We take two families of characters (χi )i∈I ∈ Ĥ = Algk(H, k) and

(χi )i∈I ∈ Ĥ

We extend them to two families of characters for H, (χ′
i )i∈I and

(χ′
i )i∈I , defined by

χ′
i (Pµ ⊗ h) = δi ,µχi (h),

and respectively by

χ′
i (Pµ ⊗ h) = δi ,µχi (h),

for all µ ∈ Z[I ] and h ∈ H.
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• Consider e the quasi-free algebra on the set (ei )i∈I and characters

(χ′
i )i∈I . By Theorem 2.10, e is a braided Hopf algebra in H

HYD.

• Analogously, consider f the quasi-free algebra on the set (fi )i∈I

and characters (χ′
i )i∈I ; f is a braided Hopf algebra in YDH

H.

• Now, we consider the deformed double biproduct

DBH(e
′, f′)σ̂ = (e′ ×H× f′)σ̂, where

σ : f′ ⊗ e′ → k

is defined by σ(fj ⊗ ei ) = δχi ,χj
ϖi ,j ; here ϖi ,j is a given family of

scalars.

58



As an associative algebra DBH(e
′, f′) is unital generated by the

elements Ei , Fi , (Pµ)µ∈Z[I ] and H, subject to the following

relations:

PµPν = δµ,νPµ, hEi = χi (h1)Eih2, Fih = χi (h2)h1Fi ,

Pµh = hPµ, PµEi = δi ,µEiPµ, FjPµ = δi ,µPµFj ,

[Fj ,Ei ] =

=
(∑

µ,ν

q−µ·νχ′
i (Pµ ⊗ R

2
)PνR

1 −
∑
µ,ν

qµ·νχ′
i (Pν ⊗ R1)PµR

2
)
δχi ,χj

ϖi ,j

=
(∑

µ

q−i ·µχi (R
2
)PµR

1 −
∑
ν

qi ·νχi (R
1)PνR

2
)
δχi ,χj

ϖi ,j

=
(∑

µ

q−i ·µPµGi −
∑
ν

qi ·νPνKi

)
δχi ,χj

ϖi ,j ,

for all i , j ∈ I
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and the Serre’s relations: i) EiEj = EjEi , for all i ̸= j such that∑
µ,ν

χ′
i (q

µ·νPµ ⊗ R1)χ′
j(Pν ⊗ R2) =∑

µ,ν

χ′
j(q

µ·νPµ ⊗ R1)χ′
i (Pν ⊗ R2) = 1

⇔ qi ·jχi (R
1)χj(R

2) = qi ·jχi (R
1)χj(R

2) = 1

⇔ χi (R
1)χj(R

2) = χj(R
1)χi (R

2) = q−i ·j .
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ii) EiEiEj − [2]EiEjEi + χi (x
1x3)χj(x

2)EjE
2
i = 0, for all i ̸= j such

that∑
µ,ν∈Z[I ]

qµ·νχ′
i ((Pµ ⊗ R1)(Pν ⊗ R2)) = q2 ⇔ qi ·iχi (R

1R2) = q2

⇔ χi (R
1R2) = q2−i ·i

and

∑
µ,ν∈Z[I ]

qµ·νχ′
i (Pµ ⊗ R1)χ′

j(Pν ⊗ R2) =

∑
µ,ν∈Z[I ]

qµ·νχ′
j(Pµ ⊗ R1)χ′

i (Pν ⊗ R2) = q−1

⇔ χi (R
1)χj(R

2) = χj(R
1)χi (R

2) = q−1−i ·j .

iii) the relations for the Fi ’s, analogous with those in ii) for the Ei ’s.
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A concrete example: the cyclic group

Let Cn = ⟨K ⟩ be the cyclic group of order n written

multiplicatively, and k a field that contains a primitive n2 root of

unity, say ζ, such that ζ2n = 1. For γ = ζn,

Φ =
n−1∑

i ,j ,l=0

γ i [
j+l ]
n 1i ⊗ 1j ⊗ 1l .

is a normalized 3-cocycle that endows k[Cn] with a quasi-Hopf

algebra structure (denoted by kΦ[Cn]); here, for any 0 ≤ j ≤ n − 1,

1j =
1

n

n−1∑
i=0

γ(n−j)iK i

.

Furthermore, (kΦ[Cn],R) is a quasitriangular quasi-Hopf algebra

with R =
∑

u,v ζ
uv1u ⊗ 1v .
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Take χi (K ) = γmi and χi (K ) = γni , where mi , ni ∈ N<n. Then

Ki = Kmi and Gi = Kni and for this datum one can consider the

quasi-quantum group (e′ × (kZ[I ] ⊗ kΦ[Cn])× f′)σ̂.

Note that the Serre relations read in this case as

since χi (R
1)χj(R

2) = χj(R
1)χi (R

2) = γminj ⇒ γminj = q−i ·j ;

since χi (R
1R2) = γm

2
i ⇒ γm

2
i = q2−i ·i and γminj = q−1−i ·j .

These can be reduced to i · j = 0, and respectively to i · i = 2 and

i · j = −1, provided that n | minj and n | m2
i (we can always do

this, by taking appropriate mi ’s and nj ’s!).
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Symplectic fermion quasi-Hopf algebra

Let C be the field of complex numbers, N a non-zero odd natural

number and q ∈ k such that q2 = −i . The family of symplectic

fermion quasi-Hopf algebras, denoted in what follows by Oq(N),

were introduced in 4. To have the simplest description for the

Yetter-Drinfeld coalgebras derived from Oq(N), in what follows we

will work with a slightly deformed version of Oq(N) (relative to the

presentation of the Oq(N) given in 5).

As an algebra, Oq(N) is the C-algebra generated by K and the

families {f ±j | 1 ≤ j ≤ N}, with relations, 1 ≤ j , t ≤ N,

f ±j K = −Kf ±j , f +j f −t + f −t f +j = δj ,te1, f ±j f ±t = −f ±t f ±j , K 4 = 1;

(22)

here e1 :=
1
2(1− K 2).

4V. Farsad, A. M. Gainutdinov, I. Runkel, Adv. Math. 400 (2022), 108–247.
5J. Berger, A. M. Gainutdinov, I. Runkel, J. Alg. 548 (2020), 96–119.
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The comultiplication ∆ and counit ε of Oq(N) are determined by

∆(K ) = K ⊗ K , ε(K ) = 1, (23)

∆(f ±j ) = f ±j ⊗ 1 + ω± ⊗ f ±j , ε(f ±j ) = 0 , ∀ 1 ≤ j ≤ N,(24)

extended to the whole Oq(N) as unital algebra morphisms;

ω± := (e0 ± ie1)K , e0 :=
1
2(1 + K 2).

The reassociator Φ of Oq(N) and its inverse Φ−1 are given by

Φ = 1⊗1⊗1+e1⊗e1⊗(K−1), Φ−1 = 1⊗1⊗1+e1⊗e1⊗(K 3−1)

(25)

where β± := e0 + q2(±i)Ne1K
N .

Note that our reassociator for Oq(N) differs from their

reassociator.
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Another different structure that we consider for Oq(N) is the triple

that defines the antipode of the quasi-Hopf algebra Oq(N). In our

definition, the antipode of Oq(N) is determined by

S(K ) = K (−1) = (e0−e1)K , S(f ±j ) = f ±j (e0±ie1)K , α = β+, β = 1,

(26)

with S extended to the whole Oq(N) as an anti-morphism of

algebras.

Consider the classical reassociator for k[C4] given by

Φ2 =
3∑

a,b,c=0

(−1)a[
b+c
4

]1a ⊗ 1b ⊗ 1c .

There is a twist F such that (Φ2)F = Φ. As for kΦ2 [C4] we have a

natural QT-structure given by R2 =
∑

u,v i
uv1u ⊗ 1v , we get for

free an R-matrix R, R = (R2)F , for k⟨K ⟩, provided that q2 = −i .

In the basis given by the powers of K ,
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R =
1

8


3 + q 2− (1 + q)i 1− q 2 + (1 + q)i

2 + (1 + q)i −(1 + q) (1− q)i −1− 2i + q

1− q −(1− q)i −(1− q) (1− 2)i

2− (1− q)i −1 + 2i + q −(1− q)i −(1 + q)

 .

We don’t have Oq(N) = (e′ × k⟨K ⟩ × f′)σ̂, but one can show that

Oq(N) = ((e⊗̃f)× k⟨K ⟩)Σ. Actually, we computed the quasi-Hopf

algebra structure of (e× k⟨K ⟩ × f)σ̂ and transported to

((e⊗̃f)× k⟨K ⟩)Σ through the natural isomorphism

((e⊗̃f)× k⟨K ⟩)Σ ≃ (e× k⟨K ⟩ × f)σ̂, and so we landed at the

infinite dimensional version of Oq(N): we don’t get the relations

f ±j f ±t = −f ±t f ±j ; one can add them by factorizing with the ideal

generated by them, a quasi-Hopf ideal actually.
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We can also consider the Serre relations for the infinite dimensional

version of Oq(N), by following the same idea as in the cyclic case

presented above (by taking mi = nj = 2, for all i , j ∈ I ). Of

course, e is the set of f −i ’s and f is the set of f +i ’s
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THANK YOU!!!
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