New classes of Quasi-Hopf algebras

Blas Torrecillas
University of Almeria, Spain

International Conference Hopf Algebras and Tensor Categories
TSIMF Sanya China, January 19-23, 2026

(joint work with D. Bulacu and D. Popescu )



Contents

Preliminaries

e The double biproduct construction

Deformations by 2-cocycles

New classes of quasi-Hopf algebras

e Some examples



Preliminaries

e We characterise double biproducts as ordinary biproducts, and
show that their deformations by 2-cocycles are double wreath
quasi-quantum groups.

e We present examples of 2-cocycles from almost skew pairings
in categories of Yetter-Drinfeld modules and show that various
types of quasi-quantum groups known in the literature are of
this type.

e We define a quasi-Hopf analogue of the Drinfeld-Jimbo
quantum groups Uq(g).



Bespalov and Drabant showed that the Majid's double biproduct
construction has a deep categorical nature.

1 Bespalov & Drabant, J. Pure Appl. Alg. 123 (1998), 105-129.
2 Majid, Math. Proc. Camb. Phil. Soc. 125 (1999), 151-192.



H a quasi-Hopf algebra

P. Schauenburg (2012) shows that there is a strongly monoidal
equivalence between ﬂ/\/lﬂ and ﬂyD, the Drinfeld center of yM

The following three notions are equivalent:

1. a braided Hopf algebra in ﬂ/\/lﬂ

2. a left biproduct quasi-Hopf algebra C x H for some Hopf
algebra C in ﬂyD
3. a quasi-Hopf algebra A with a projection 7 : A — H.



Explicit structures

e The algebras in /\/l,_, are (left) smash product algebras C#H
between an algebra C in H)}D and H.

e C#H is the k-vector space C ® H endowed with the
multiplication given by

(c#h)('#h) = (x* - c)(x2hy - ) #xC ol

forall c,c’ € C and h,h" € H and unit 1cupy = Lc#1y. We
need only C an algebra in y M, the monoidal category of left
H-modules, in order to get C#H a k-algebra; the algebra
structure of C in HyD is needed to regard C#H as an
algebra in HMH



Some structures

e The coalgebras in ﬂ/\/lﬂ are (left) smash product coalgebras
C >< H between a coalgebra C in ﬂyl) and H, a coalgebra
within the monoidal category y My of H-bimodules.

e C >1H = C® H as k-vector spaces, with comultiplication
determined by

Ac > h) = (y* Xt > y? YH(xIX2. c;){,l}szfhl)
(Y2 (x'X2 - )0y > y3 Y3 X3 h),

for all c € C and h € H, and counit ecsqy = £c R en.



Explicit structures

e Thus, any bialgebra (resp. Hopf algebra) in ﬂ./\/lﬂ is of the
form C ® H for a certain bialgebra (resp. Hopf algebra) C in
ﬂyD, and is denoted by C x H.

o CxH= C#H as an algebra, C x H= C >a H as a coalgebra
and, moreover, it is a quasi-bialgebra (resp. quasi-Hopf
algebra) with reassociator (resp. antipode) defined by

Sexp=1lcx X' @1lcx X?®1c x X3,
(s'(c x h) = (1c x S(X*picr_1yh)a)(X?p3 - Sc(cqoy) x X3p?),
1C X Q. ]-C X B),

for all c € C, h € H, where we wrote ¢ x h in place of c® h
in order to distinguish the quasi-bialgebra structure on C @ H
given by the left biproduct construction.



The right handed version

e The algebras in ﬁ/\/lﬂ are the right smash product algebras
H+#B between an algebra B in yDﬂ and H, where H#B is
H ® B equipped with multiplication and unit given by,

Vb, beB, hy W eH,

(h#b)(h'#b") = hhyx 4(b - hhx?)(b - x3), 1pxg =1y x 1

e The coalgebras in ﬂ/\/lﬂ are the right smash product
coalgebras H >< B between a coalgebra B in yDﬂ and H,
where H < B is H ® B endowed with the comultiplication
and counit determined by

A(hp< b) = (mX{x' Yyl < (b - X2x)0) - Y2)7)
R(hX3x?(by - X2x3) 1) Y3y o< by - X3y?), epxp =en @ £5;



e H x B is the right biproduct of B, H, a quasi-Hopf algebra with
Ppxg =X x 1g @ X? x 15 ® X x 1g,
(s"(h x b) = (§*X" x Sg(b()) - G X?)(BS(hb1)@X>) x 1g),

o X 1B,ﬁ X ].B).
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e Let B € YD} Define B € HYD as the object B with
structure given by
h-b=b-S"(h) and
Xg(b) = g'S((b- STHM)))f? @ (b- STHf)) ) - STH(&?).
e If B has an algebra structure in yDﬂ then B is an algebra in
ﬂyD with multiplication
beb = (b-STH ) lb' - STHA)(b-STHM)w):
for all b, b’ € B, and unit equals 1, the unit of B (the
juxtaposition denotes the multiplication of B in yz)ﬁ).

e If B is a coalgebra in yDg then B is a coalgebra in ﬂyl) with
counit equals g and comultiplication defined, for all b € B,

by
Ag(b) = by®bs := (b1)(0) X*p2S(g") @b S (7S(X  pi) (b)) X°p?)
where (Ag: B> b+ by ® by € B® B, eg) is the coalgebra

structure of B in YD, 1



The isomorphism

e If Bis a (co)algebra in YD} then B is a (co)algebra in #YD
and the smash product algebras H#B and B#H are
isomorphic.

e A right biproduct quasi-bialgebra (resp. quasi-Hopf algebra) is
always isomorphic to a left biproduct quasi-bialgebra (resp.
quasi-Hopf algebra).

e In any of these situations the isomorphism is given by vg
defined by

vg(b®h) = qlgls(qggfb(;)2ﬁ2)flh1®b(g)'S(G%gfb(;)lﬁl)ﬂhz

e |ts inverse is

vg' (h®b) = (b-x*)0) - B'S™ (hx') @ hax®(b - x*)1)p.
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The natural condition

e Assume further that B, C satisfy the compatibility relation
b®c= b(g) "C—1} ® b(l) " C{0}» VbeB, ceC.

e |t is imposed by the fact that: since Y = C ® H and
X = H® B are bialgebras (resp. Hopf algebras) in HA! the
tensor product algebra and coalgebra structure on
Z =Y ®y X afford a bialgebra (resp. Hopf algebra)
structure on Z in ﬂ/\/lﬂ if and only if dy x o dx,y = Idxg,v,
where d is the braiding of ﬂ/\/lﬂ

e Let X, Y be the objects of ’;’,Mﬂ defined by the bialgebras
Ce ﬂyD, and respectively B € yDﬂ, as in the above. Then
the following assertions are equivalent:
(i) Z= Y ®uy X is a bialgebra in # MM
(i) C®B is a bialgebra in HYD;
(iii) For all c € C and b € B the preceding relation holds.

13



Double biproduct quasi-Hopf algebras

e Z=YuX=2Z:=C®H®®B is a k-algebra with
multiplication
(cohab)(c'@h@b) = (yt-c)(y?hixt- )Ry hax®h 2 @ (b-x3hy2%) (b-2°).

The unitof Zis1c ® 1y ® 1, i.e. as a k-algebra
Z = C#H#B, the two-sided smash product algebra of C, B
and H.
e Z is an H-bimodule coalgebra with comultiplication given by
Az(c® h®b) = [(c > h)1- Y{t'Z ui @ (by - Y?)(0) - Z%u3)
®[(c > h)2 - Y3 t2(by - Y2t3) 1) 230 @ by - V3P
=X a®y?TH(Z'X? - @) (_132° X7 - (he< b)1]
i T? (2 X2 @)y ® 3 T°2°X5 - (h< b)al,
and counit ez = Rey Vep.

!Bulacu, Panaite, Van O;staeyen, Comm. Math. Phys. 266 (2006) "



Double biproduct quasi-Hopf algebras

We denote this coalgebra structure on Z by C >1 H < B.
o C X Hx B := C#H#B as an algebra.
e C X Hx B:=C > H >1B as a coalgebra.

e C x H x B is a quasi-bialgebra with reassociator 1¢ x ¢ x 1p,
and

e a quasi-Hopf algebra with antipode

s(bx hxc)=(1c x S(Y(z'x*- c){_l}z2x12h(171)y11X11tlpl)a x 1p)
(§C(Y2 . (zlx1 . c){o}) X Y3z3x22h(1,2)y21X21t2
xSp((b-y*)0) - X3t))(1c x p>S(xhay?(b- y*)1yX?) x 1p)

and distinguished elements 1¢ x a X 1g and 1¢ X 8 X 1p.

ii5)



Double biproducts are biproducts

C x Hx B=(C®B)#H as an algebra;

C x Hx B=(C®B) > H as a coalgebra;
e C x Hx B=(C®B) x H as a quasi-Hopf algebra.

In all these cases the isomorphism is produced by x defined by

X(c®h@b) = (y*-c®(b-x*)(0)-B* S (y*hix"))@y > hax®(b-x*) (1)

p.
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2-cocycles in braided categories

e A 2-cocycle of a braided bialgebra A in (C, c) is a morphism
T:A®A = 1in C obeying 7(n, ® Ida) = g4 = 7(Ida ® 1)
and

and for simplicity we assumed C strict monoidal.

e A 2-cocycle 7 of a bialgebra A in (C, ¢) is called invertible if it
is convolution invertible

17



2-cocycles in braided categories

e Let 7 be an invertible 2-cocycle of the bialgebra A.

e A, is the coalgebra A with unit N, and multiplication

e A. is a bialgebra in C and, moreover, a Hopf algebra with
Shi=(ur®S,® ur)(Ida® Ay)A,, provided that sois A Sy;
o u :=7(Ida® S,)A4 : A— 1, and similar for u=.

18



Theorem
(F,e2,%0) : (C,c) — (D,d) is a braided functor, A a bialgebra in

C.
(i) The map ¥ : Hom¢(A® A,1) — Homp(F(A) @ F(A), 1)

sending T to

¥P2,AA

75 F(A) @ F(A) 24 Fae A) 2T Fa) £

is a morphism of monoids.
IfT: A® A — 1 is a 2-cocycle of A then Tr is a 2-cocycle of F(A).

(ii) If F is, moreover, a braided equivalence then V is an
isomorphism of monoids, so any 2-cocycle of F(A) equals Tx for a
certain 2-cocycle 7 of A in C. Furthermore, T is invertible if and
only if so is 7r, and F(A;) = F(A),, as bialgebras in D.
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The ideal case

Theorem
Let A € H1YD be a bialgebra (resp. Hopf algebra) and

¥ Fi(A) @y Fi(A) — H an invertible 2-cocycle of Fi(A) .= A® H
in M. Then there exists an invertible 2-cocycle 9 of A in HyD
such that Fj(A)g = Fi(Ay) as bialgebras (resp. Hopf algebras) in
HM!. Consequently, if (A x H)y is the quasi-bialgebra (resp.
quasi-Hopf algebra) corresponding to the bialgebra (resp. Hopf
algebra) Fi(A)g in HM! then (A x H)y = Az x H as
quasi-bialgebras (resp. quasi-Hopf algebras).

e When K = R x H, one can work over H; K is a bimonoid in
1My, and for such a context a theory of 2-cocycles and
deformations produced by them exists.
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The bimonoid case

e If i: H— K is a quasi-Hopf algebra morphism, K is an
algebra in yMpy via my and i.

e A normalized 2-cocycle of K is an H-bilinear morphism
w: K@y K — kst w(lk ®uyx)=w(x ®u 1x)=ck(x),

w(x1 ®H y1)w(xey2 ®p z)=w(y1 On 21)w(x ®H y222).

e For K= R x H, owing to 2, giving an (invertible) normalized
2-cocycle o on R x H is equivalent to giving an (invertible)
normalized left H-linear morphism ¥ : RQR — k obeying

I((s@t)1)0(r@mu((s®t)2) =
I((xt - r@x? - s)1)I(ma((x" - r@x? - 5)1) ).
e R®R is R ® R with the braided monoidal algebra, coalgebra

structure given by the tensor product of R and itself in ﬂyD.
Bulacu, Popescu, T., Double wreath quasi-Hopf algebras, J. Algebra (2025)
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2-cocycles for double biproducts C x H x B

e We consider almost (invertible) normalized 2-cocycles on
C®B in ﬁy@ of the form ¥ = e ® ¥ ® gg for a suitable
k-linear ¥ : BRC — k.

e We replace B by an arbitrary bialgebra A in ﬁy@ such that
the tensor product algebra and coalgebra structures afford on
C ® A a braided bialgebra structure, denoted by C®A.

Theorem
¥ is an almost (invertible) normalized 2-cocycle iff ¥ : A® C — k

is left H-linear (convolution invertible in yM ), and
Y(140c¢) = ec(c) , L(a®lc) = gx(a);
Y(ad'®c) = T(X! - a®x3X3 - )T (x1X? - d@x* X3 - c1);
Y(a®cd) = T(y' XX - @y (X2x; - @) X3x% - ¢)
T(y* - (X2x3 - ) @x° - ).
22



2-cocycles for double biproducts

When we take A = B as bialgebra in ﬂyD, keeping in mind the
bialgebra structure of B, an almost dual skew pairing between B,
C is a k-linear morphism ¥ : B® C — k satisfying

Y(b-S7Y(h) @ hy-c) =e(h)Z(b® c),
(1 ® c) =ec(c), X(b® 1¢) = gp(b);
Y (by(b' - b)), c) =X (b- SHX'gY) @ x3X3 - @)
Y(b - S (x 1x2 g2 ®xX2X3 - c1);
Y(b®cc') =X ((b)() Y piS 1y XX GY®
78156 S (XG2S A Er)oy ¥ ) >)f2x3 ?-c)
£((be S H(FXE S (Y o) (b)Y ) 0) S (°8?)

®x3-c).
23



2-cocycles for double biproducts

e Moving backwards, ¥ : B® C — k defines 1} that defines w,
the later being a normalized invertible 2-cocycle on
(C@E) x H over H, Explicitly,
w: ((C®B) x H) @n ((C®B) x H) — k is given by

W((cBb) x h@w (BH) x H) = e(H)I(cBb® h-(c'BY))
= e(h)eg(t)x(b@h-C),

forall b € B, c,c’ € C and h,h' € H.

e At a first sight is quite impossible to find such a X. But, using
the quasi-Hopf algebra isomorphism
x:C x Hx B — (C®B) x H one can see that the ¥'s are in
a one to one correspondence to certain H-balanced morphisms
o : B® A — k, morphisms that can be determined much
more easily.
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2-cocycles for double biproducts

Theorem

Let H be a quasi-Hopf algebra, C € ﬂyD and B € yDﬂ braided
Hopf algebras, and B the braided Hopf algebra in ﬂyD associated
to B. Then there is a one to one correspondence between:

(i) almost (invertible) dual skew parings ¥ : B ® C — k, and
(ii) H-balanced morphisms o : B ® C — k satisfying

o(b®cc’)=o(by® a)o(by ® ),
o(bb' ® c) = o(b® by - 2)o(bjg) ® c1).

(C x H x B)? and ((C®B) x H)“ are isomorphic quasi-Hopf
algebras.
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Double biproduct quasi-Hopf algebras of dimension 32

e H.y(8) are the quasi-Hopf algebras introduced in 3.

e As k-algebras, H.(8) are unital, generated by g, x with
relations g2 =1, x* = 0 and gx = —gx.

e The (non-coassociative) coalgebra structures of Hy(8) are

given by

Alg)=g®g, clg)=1,
A(x) =x® (pr tip_) +1® pix + g ® p_x, £(x) =0,

extended as algebra morphisms, where p; = (1 +g).

e {g?xP]0<a<1,0<b<3}isacommon basis for Hi(8),
two quasi-Hopf algebras with reassociator
®P=1®1®1—2p_ ® p_ ® p_ and antipode defined by
S(g) =g, S(x) = —x(p+ £ ip—), extended as an anti-algebra

inguished elements o = g and g = 1.
3P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of

codimension 2. Math. Res. Lett. 11 (2004) 685—696.
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Double biproduct quasi-Hopf algebras of dimension 32

e H.(8) contain H(2) as a quasi-Hopf subalgebra.

e H(2) is the group algebra of k and the cyclic group (g), a
2-dimensional quasi-Hopf algebra with coalgebra structure,
reassociator ¢ and antipode (S, «, 3) given by the same
relations as in the case of H(8).

e The biproduct quasi-Hopf algebras that identify to H(8) as
quasi-Hopf algebras are defined by the following braided Hopf
algebras Ry € Z%:VD

e As vector spaces, Ry are generated by 1, uy 1= (p— %+ ip4)x,
v = gx? and wy := (p_ F ip;)x3, and are Yetter-Drinfeld
modules over H(2) with structures defined by

grl=1 grur=—uy, gov=v, gbwy = —Wwg;
1—-1®1, uy — (p+£ip-)Quy, v 1® v and

wy — (py £ ip-) @ w. 27



Double biproduct quasi-Hopf algebras of dimension 32

e Ry are unital braided algebras with unit 1 and multiplication e

determined by
Ureuy =Fiv, ureVv =wi, VeUuL = —Wy,
Uy oWy =vev=vewy—=wreu—=wrev=wgew; =20,
e and counital braided coalgebras with counits £, and
comultiplications A given by ¢, (1) =1,
ex(ut) =ex(v) = e4(wa) =0,
Ay(ur)=1®usr +ur®1,
Ay(v)=v®1+1®v—wrus @ uy, where wr :=1F, and
Ar(wy)=wi®14+1Qwrtiug @vFive ug.
o Finally, the braided antipode S of Ry is characterized by

Si(1)=1, Sy(us) = —ux, Sy(v) ==xiv, Sy (wa) = Liwy.
28



Double biproduct quasi-Hopf algebras of dimension 32

e For Take C R, and B = R_, by using the structures of
C,Bin H yD one can check easily that

CrR,,R_ © CR_,R, = Idr_gr, (c is the braiding of nggyD).

e Thus R := R.®R_ is a braided Hopf algebra in H yD and
R x H(2), a 32-dimensional quasi-Hopf algebra, |dent|f|es to a
double biproduct quasi-Hopf algebra.

e The 2-cocycles of R x H defined by an almost dual pairing *
between R_ and R, are parametrized by a € k, since the only
non-zero values of Y are ¥(1® 1) =1, L(v- ® uy) = a,
Y(vRVv)=—wia®and T(w_ @ wy) = —w_a°.

e Having ¥, we have a 2-cocycle w on R x H, and therefore we
can apply the bosonization process to R x H and w.



Quasi free (left) Yetter-Drinfeld datum

Let H be a quasi-Hopf algebra with bijective antipode.

Definition
A quasi free (left) Yetter-Drinfeld datum over H (free YD-datum

for short) is a triple ((&j)icr, (xi)ici, R) consisting of a family of
elements (e;);c; indexed by a non-empty set /, a family of
characters (x)ies of H indexed by / and an element R € H® H
satisfying (Idy ® €)(R) =1 and

(Id® A)(R) = (P231) ' Ri3Po13Ri2(P123) *
_ X3R1X2r1y1 ®x1X1r2y2 ® X2R2X3 3’ (1)
A%(h)R = RA(h)
ie. MR'®MR>=RM @ R?h, YVheH, (2

where R = R' ® R? = r! ® r? are two copies of R.
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e Note that the three conditions imposed to the above R € H® H
are part of the definition of an R-matrix for H. Thus, a couple
(H, R) with R € H® H obeying ¢(R?)R! = 1, (0.1) and (0.2) will
be called in what follows a (left) semi-quasitriangular quasi-Hopf
algebra (semi-QT for short). Also, we say that R is a (left) semi
R-matrix for H.

e A semi R-matrix for H is always invertible, provided that S is
bijective. As in the quasitriangular case, one can see that the
inverse of R is given by

R~ .— G2y2Rp @ y3S71(§H 2Ryt (3)
= GX'R'p' @ GBX3STHEXIR? ). (4)
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Lemma

Giving a left Yetter-Drinfeld module structure on a one dimensional
vector space is equivalent to giving a pair (x, R) consisting of a
character x of H and an element R € H such that (R) =1,
X(h2)h1 R = x(h1)Rho, for all h € H, and

A(R) = x(3XPy XX Ry @ X2RXC Y3, (5)

Corollary

If H possess a semi R-matrix R, any character x of H determines a
left Yetter-Drinfeld module structure on each one dimensional
vector space.
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Denote by YD; the set of pairs (8, x) consisting of an element
R € H and a character x of H such that, for all h € H,

A(R) = x(3X2yHxIXTRy? @ x28X3y3
X(h2)h1ﬁ = X(hl)ﬁhg
e(R) =1

33



Lemma

FOf (ﬁlv Xl)v (ﬁ27 XZ) € yD]_, define
(R1,x1)*(R2, x2) == (1 (XX Y )2 (X Y2) X R1x*R2 Y3, x1x2)-

Then, the following assertions hold:
(i) The operation x is an associative product in YDs;

(ii) (1,¢) is a neutral element of YD1, and with respect with it any
element (8, x) is invertible, with inverse given by (7%, x71),

1

where x ™ is the (convolution) inverse of x and

&= x(FPgh)S T (F1Rg?), (7)

where f = f1 @ f2 is the Drinfeld twist and g = g' @ g2 is its

inverse;

(i) (YD1, %) is a commutative group.



e Let £ = (&;); be a family of elements indexed by an non-empty
set /| and (xi)ies a family of characters of H.

e A (left) quasi-word in alphabet & is a sequence

w = W(ilv T ,i,,) = ei1(ei2(ei3 T (efn—1ein) T ))

with n a non-zero natural number (called in what follows the
length of w) and iy, --- i, € I; we include also the empty word ().

e The presence of the parenthesis is justified by the fact that the
algebra we want to built might be non-associative, as for an algebra
in ﬁy@ the associativity of the multiplication is controlled by the
associativity constraint of ﬂyD, and thus by the reassociator .
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We define the (left) quasi-free k-algebra on the set &£, denoted by
k{(€}, as being the k-vector space with basis the all (left)
quasi-words in alphabet &, including the empty word (J; the
multiplication between two non-empty quasi-words w and

w' = w(if, -, in) = e;(ey(ey - (e ey)--)) is ascalar

multiple of the " concatenation” of the two quasi-words,

WWI — K/W(I.]_, poo . in’ ,{7 000 o II/TI) = ,lq‘/e’-:l(el-2 .o (einil(e,-n(ei{(. .. (ei,,nfleir/n) o

with the scalar k determined by the following rule:
(eilei2)ef3 - Xfl(Xl)Xiz(X2)Xi3(X3)ei1(eizeia)a Vi, ki3 €1, (8)

extended to arbitrary non-empty quasi-words by considering

Xw (i, i) = Xit (Xio * ** (Xi_1Xin) - - - ); more generally, if the order
of the parenthesis in a concatenation is not the standard one then
we adapt the definition of x associated to concatenation
accordingly. The unit is the empty word.
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Proposition

Let H be a quasi-Hopf algebra, £ = (e;)ie; a family of elements
and (Ri, xi)iel a family with elements in YD;1. Then k{(£} admits
a unique algebra structure in ﬂyD such that, for all h € H and
iel,

h-e = xi(h)ej and \(e;) = & ® e, (9)

where X is the left coaction of H on k{(£}.

Lemma

Let 1 : & — k{(E} be the inclusion map and A an algebra in 1YD.
Then, for any map f : £ — A obeying, for all h€ H and i € I,

X,‘(h)f(e,') =h- f(e,-) and R; ® f(e,-) = f(e,-)[,l] & f(e,-)[g], (10)

there exists a unique morphism f : k{(€} — A of algebras in ﬂyD
such that fu = f.
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e For any 1 < s < n, denote by S5 ,_s the set of (s, n — s)-shuffles,
that is the set of permutations o € S, for which (1) < --- < o(s)
and o(s+1) <--- < o(n).

e It is well-known that S, ,_x has (7) elements, so S, contains in
total 2" shuffles; we included also Sy , := {e} = Sy, e being the
identical permutation of S,,.

e For o € S,,, we denote by Inv(c) the set of inversions of o; by
convention, if (u,v) € Inv(o) then u < v, and so o(u) > o(v).
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Proposition

There is a unique coalgebra structure (A, ¢) on k{(€} in HYD
such that the comultiplication A is a morphism of algebras in
ﬂyD and A(ej) = e, @1+ 1® e, forall i € I. Furthermore, for

any quasi-word w = w(iy, -+ ,ip) we have
aw=> > II{ IT ()
s=00€Ss n—s u=1 \ (u,v)€lnv(c—1) (11)
W(io(1), 5 lo(s)) ® Wlig(s41)> - 5 in(n));

and the counit € is a morphism of algebras in ﬂy@ determined by
e(e;) =0, for all i € I. Consequently, k{(€} is a bialgebra in FYD.
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Theorem
Let € = (ej)ics be a family of elements and (R;, x;)ic; a family of

elements of YD1. Then, the (left) quasi-free algebra on the set &,
k{(E} is a braided Hopf algebra in YD with the following
structure:

e k{(E} is a left Yetter-Drinfeld module with H-action defined by
h-1=¢e(h)l and h-w(ir,-,in) = xXw(h)w(ir, - ,in), forall h € H
and non-empty quasi-word w(iy,- - , i), and H-coaction
determined by 1 — 1® 1 and w = w(ir, - ,ipn) — Ry @ w;

e the multiplication m of k{(E} is given by (8) and the unit is the
empty word 1;

1®1 and

e the comultiplication A of k{(£} is defined by A(1) =
=1 and

(11), while the counit & of k{(£} is defined by £(1)
e(w) =0, for any non-empty quasi-word w;
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Theorem (Continued)
e the braided antipode S of k{(€} is determined by S(1) =1,

§(e;) = —€, 5(6,‘16,'2) = X;2(ﬁ1)e,-2e,-1 and

S(w <Hx,, Xin UJ)(:

Jj=

(12)
X (X X (X )x,l(x3)) oo o]

for any non-empty quasi-word w = w(i,- - ,I,) of length n > 3.
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Corollary
Let H and {(Rj, xi)}iel as previously. Given a family of symbols

E = (Ej)jey, the biproduct quasi-Hopf algebra ¢, associated to the
braided Hopf algebra k{(E}, admits the following presentation:

e Algebra Structure: As a unital associative algebra, ¢ is
generated by the family {E;};c; and H, subject to the
relations:

hE; = xi(h1)Eiho
foralliel and h € H.

e Coalgebra Structure: The comultiplication A, and the
counit €, are determined by:
A(E) = xi(xDEx? @ x3 4 xi(X2xH)XERix? @ EXCX3,
Ac(h) = A(h),
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Corollary (continued)
and

e.(Ei) =0, &.(h)=e(h),

for all i € | and h € H. These maps are extended to all of ¢ as
algebra homomorphisms.

e Antipode: The antipode S, is defined by:
Se(Ei) = —xi(X'p3)S(X pi&)aEX3p® and  Si(h) = S(h),

for all i € | and h € H, extended as an algebra
anti-homomorphism.

e Quasi-Hopf Structure: The Drinfeld associator and the
distinguished elements «, 8 coincide with those of H.
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The right version of the quasi free algebra

Consider F = (f;)jcy a family of elements indexed by a non-empty
set J and (X;)jes a family of characters of H. For any j € J, kf; as
a right H-module via the action given by X;: f; - h = X;(h)f;, for all
h € H. Then, kf; is, moreover, a right Yetter-Drinfeld module over
H if and only if there exists an element &; in H such that,

A(8)) = X;(* XNy X167 © y26;X3%3,
Yj(hl)ﬁth = Yj(hz)hlﬁj,
e(®;) =1, (13)
for all h € H. Denote by VD] the set of couples (&,%) with X a

character of H and & an element of H satisfying (13). YD} is a
commutative group under the law of composition

(61, X1)(®2,X2) = (61 0 B2,X1X>), Where
B1 0 B := x1(X2x Y ) (X33 YA ) X162, Y3,
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A right quasi-word in alphabet F is a sequence

v=v( - odn) = (G ((Gfp)fs) -
natural number (called the length of v) and j1, - ,j, € J; we

)f;,_1)f;, with n a non-zero

include also the empty word ().

We define the right quasi-free k-algebra on the set F, denoted by
k{F)}, as being the k-vector space with basis the all right
quasi-words in alphabet F, including the empty word (J); the
multiplication between v and
Vi= (s odm) = (o (B fy)fy) - £ )i, is a scalar multiple
of the " concatenation” of the two quasi- words,
w = &'v(i1, gty adh) =
B (G () o)) - B s (14)

with the scalar x’ determined by the following rule:

(leﬂz)f le( I)ng(x2)Yj3(X3)6'1(6'26'3)7 V1, J2,43 € J. (15)
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To perform the double biproduct we need the compatibility
relation, if C = ¢ is the Hopf algebra in ﬂyD and B ={ is the
Hopf algebra in yDﬂ then for all b€ B and c € C,

b® ¢ = b) - ¢-11® bq) - Clo)-

Thus, for our structures and b = v, ¢ = w, the above condition
specializes as v @ w = X, (Rw ) Xxw(®,)v ® w. Hence, me must
have X, (&w)xw(®,) =1, for all v and w. This is equivalent to
Xj(Ri)xi(8;) =1, forall (i,j) €l x J.
This is satisfied working with £;'s and the &;’s defined by an
R-matrix of H, since & = xw(R!)R? and &, =¥, (R°)R", and
therefore

_ _ _ 2

X (B)xw(®0) = xw(RHX(R?)X (R xuw(

= Xw(RRN(RPR) =1,

)

as needed.
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Proposition
Suppose that ¢ and § are compatible, in the sense that

X;(Ri)xi(8;) =1, for all (i,j) € | x J. Then, the double biproduct
quasi-Hopf algebra of ¢ and f over H, denoted by
DBy(e,f) = e x H x §, can be described as follows:

e as an associative algebra, DBy(e¢,§) is unital, generated by the
elements E;’s, F;'s and H with relations

hE; = xi(h1)Eih2, Fjh=X;(h2)hiFj, EiFj=F;j,

for all (i,j) €l x J and he H;

e the quasi-coalgebra structure of DBy(e,f) is defined by

A(E) = xi(xNEx® @ X3 + xi(X3x)X1Rix? @ EX3x3, e(E) =0,
A(F) =x;03)x" @ XFj + X;(X?)x' F; @ x*8;X3, 2(F;) = 0,
for all (i,j) € H, and the restriction of A (resp. ¢) to H equals the
47

comultiplication of H (resp. the counit of H);



Proposition (Continued)
e with the above strutures DBy (e, f) is a quasi-bialgebra with

reassociator ® and, moreover, a quasi-Hopf algebra with antipode
S given by the distinguished elements o, 8 and

—xi(X1p3)S(X piR)aEX3p?,
—X;(@X?)d X F;BS(8;35X3),

S(Ei)
S(Fj)

for all i € | and j € J, extended as an anti-morphism of algebras
and such that its restriction to H equals S.
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A double biproduct can be always identified, up to an isomorphism,
with a left (or right) biproduct. The first step is to associate to f,
a braided Hopf algebra § in ﬁyD.

Proposition

f = f as a vector space, and a braided Hopf algebra in YD with
structure given by:

e | is a left H-module with action defined by h- f; = x; ' (h)f,
for all h € H, extended to the whole space § by using
h-(66") = (hy-b)(hy-b), and a left YD-module over H with
coaction determined by f; — (’51.’1 ® f;, for all j € J, extended
to the whole space | as an algebra morphism, by using
(bb")[—1) ® (bb")[q) = X(xty?t. [l)[_1]X2(Y2 [ Y3®
(X2 (Y b)) (XX - (Y2 - b')pq)),

e the multiplication of | is given by the multiplication f as
follows: vv/ = X, 1(S(&,)f1)x, (F2)w/, for all v and V/,
where V is v viewed in | instead of § and similar for v';
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We denote by Ay(e, f) the space e ® f endowed with the tensor
product algebra and coalgebra structure of ¢ and § in ﬁyp. As we
assumed that the compatibility relation holds, Ag(e,f) is a braided
Hopf algebra in ﬁy@. The associated biproduct quasi-Hopf
algebra Ag(e, f) x H has the following structure:

Algebra structure B

A an algebra is generated by the elements (E;);c, (Fj)jcs and H
subject to the relations hE; = x;(h1)E;hs, hfj = le(hl)fjhg and
FiEi =X M (X2 )xi(XEx28 Y EF X33, for all (i j) € 1 x J
and h e H.
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Comultiplication and counit

A(E) = xi(xDEx? @ x3 4 xi(X2xH) X Rix? @ E;X3x3,
A(F)) =X PR @07 + X7 (XX Y612 © FX53,

S(E,') = O,E(Fj) = 0,

for all (i,j) € I x J, and on H they reduce to the comultiplication
and the counit of H;

Antipode
S(E) = —xi(X*p3)S(X'pi &i)aEi X3 p?,
S(Fj) = —x; H(X?p3)S(X*p1&; 1 )aF ;X p.
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Serre’s relations

Let (H, R) be a QT quasi-Hopf algebra and g a non-zero scalar.

Denote by J. (resp. J;) the ideal of ¢ (resp. f) generated by

{eiej — ejei | i #j st xi(RY)x;(R?) = x;(RY)xi(R?) = 1}
U{ei(eie)) — [2]ei(gjer) + xi(x'x3)xj(x*)ejel | i #j st
Xi(R'R?) = ¢*, xi(R)xj(R?) = x;(R )xi(R*) = ¢}

({fifi = £ifi | i # ) st x(ROG(RY) = (R (R = 1}
U (<D3)x; 04 i(fify) — RIGG)fi + (F5)fi | i #J s.t.

Xi(R'R?) = & xR (R?) = X, (ROx:(R®) = a1},

where [2] = g+ q7 L.
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e Then J. (resp. Jj) is a braided Hopf ideal in ¢ (resp. f), and we

can consider the quotient braided Hopf algebra ¢/ = 3% (resp.

=1

e When we perform the double biproduct quasi-Hopf algebra
¢/ x H x ' we have for it a similar description as for ¢ x H X f, with
mention that the relations amoung the algebra generators are
enriched with the two sets of Serre relations described above.
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2-cocycle deformation

Let A (for us ¢’) be a Hopf algebra in 2D and B (for us ') a
Hopf algebra in yDﬂ. Two cocycles for A x H x B are produced
by linear maps o : B ® A — k satisfying the usual unital conditions

and
o(b-h®a)=oc(b® h-a), (16)
o(b® ad') = o(by ® a)o(by ® a'), (17)
o(bb ® ) = o(b® by - a)o(blpy ©a1),  (18)

forall he H, a,a’ € Aand b, b’ € B. More exactly,

:(Ax HxB)®u(Ax Hx B)— k defined by
dglaxhxbeyad xh xb)=¢cpla)o(a® h-b)e(h)eg(b')is a
2-cocycle for A x H x B.
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e For us, o as above are defined by
o(f; ® ei) = by, @i,

e (A x B x H x B)? has the same quasi-coalgebra structure as
A x H x B, but the algebra structure changes as follows
(iel, jed, heH):

hE,' = X,’(hl)E,'hQ (19)

hFj = X;(h2) i Fj, (20)
2T

[Fi, El = (i(ROR = xi(RYR)oy zwij- (1)

e The antipode changes accordingly.
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Drinfeld-Jimbo quasi-quantum groups

e Let (/,-) be a Cartan datum. Here (Z[/],+) is the free abelian
group with basis {/,i € I}. The elements of Z[/] are denoted by
{K,,v € Z[I]}; then K,K, = K.+, so Ko is the neutral element
of Z[I], and K ' = K_,,, for all u,v € Z[I].

e We assume [/ to be finite just to have an R-matrix for the Hopf
algebra of functions associated to Z[/], k“Ul. Actually, it its
well-known that R; = Zu,ueZ[l] q"VP, ® P, is an R-matrix for
kU1 where (Pu) ez is the basis of k“I dual to the basis
(Ku)uezp of k[Z[1]].

e We don't have non-trivial abelian 3-cocycles for the group Z[/],
and therefore no quasitriangular structures in the quasi-Hopf sense
for kZI1, Therefore, we have to tensorize KZU] with a
quasitriangular quasi-Hopf algebra (H, R).
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For (H, R) as above, set H = kUl © H, a QT quasi-Hopf algebra
with R-matrix R given by

R =R @ R'® R? ® R?.
We take two families of characters (x;)ic; € H = Alg,(H, k) and
(Xi)ier € H

We extend them to two families of characters for H, (x’;)ies and
(X})ier, defined by

Xi(Pu ® h) = i uxi(h),
and respectively by
Xi(Pu ® h) = 0;,.%;(h),

for all w € Z[I] and h € H.
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e Consider ¢ the quasi-free algebra on the set (e;);e; and characters
(x})ic1- By Theorem 2.10, ¢ is a braided Hopf algebra in ZYD.

e Analogously, consider f the quasi-free algebra on the set (f;);c/
and characters (X%)ic/; f is a braided Hopf algebra in YDH.

e Now, we consider the deformed double biproduct
DBy (¢',§)s = (¢/ x H x ), where
o:f@d =k

is defined by o(f; ® €;) = 0y, x,@i,j; here wj; is a given family of
scalars.
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As an associative algebra DBy(¢’,{') is unital generated by the
elements E;, F;, (Pu)uczy) and H, subject to the following

relations:

PNP,, = (5# Z,PH, hE' = X,’(hl)E'hQ, F'h = y-(hz)th,-,
P.h= hP,, P.E; = 6;,EiP,, FiP, = 0;i,.P.F,

Zq B (P, @ RO)PR' —qu (P, ® RYP,R?)by, % i
Zq_' “i(RH)P,R' —Zq’ Yxi(RY)P, R?) by, % mi.;

Z qil.MP;LQSI - Z q"”Pyﬁi)(thij,‘%j,
0 v

forall i,j el
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and the Serre’'s relations: i) E;E; = E;E;, for all i # j such that

> _xXi(q""Pu @ RYxj(P, ® R?) =

JIR%

ZX}(qM.VPM & Rl)x:(Py ® R2) _q
1,V

& qxi(RYx(R?) = g xi(RMx(R?) =1
& xi(RYxj(R?) = xj(R)xi(R?) = 7.
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ii) E,'E,'EJ' — [2]E,'EjE,' + Xi(X1X3)Xj(X2)EjE,'2 — 0, for all i 7&_] such
that

> NP @ RY(P, @ R)) = ¢ & ¢ (R'R?) = ¢?
IRz

& xi(RIR?) = 2

and

> Xi(P.® ROX)(P, ® R?) =
w,vEZ[I]
> NP ® ROXI(P, & R?) = g7
w,vEZ[I
& Xi(RYX(R?) = xj(R)xi(R*) = ¢ 17",

iii) the relations for the F;'s, analogous with those in ii) for the E;'s.
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A concrete example: the cyclic group

Let C, = (K) be the cyclic group of order n written

2

multiplicatively, and k a field that contains a primitive n“ root of

unity, say ¢, such that ¢?" = 1. For v = (",

n—1
]
b = Z "y’[]%l,' () 1J' X 1/.
i j,i=0

is a normalized 3-cocycle that endows k[C,]| with a quasi-Hopf

algebra structure (denoted by k¢ [Cy]); here, for any 0 <j < n—1,

-1
L
iT v

i=0

Furthermore, (ko[Cy], R) is a quasitriangular quasi-Hopf algebra
with R=3,,¢"1,®1,.
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Take x;(K) =~™ and X;(K) = ~", where m;, n; € N,. Then
RKi = K™ and &; = K" and for this datum one can consider the
quasi-quantum group (¢/ x (k%I @ ke[Cp]) x /)°.

Note that the Serre relations read in this case as
since xi(R")xj(R?) = xj(RY)xi(R?) = ™" = y™" = q~'/;
since X;(R1R2) = fymiz = ,ym% = q2_i'i and ,yminj _ q—l—i-j‘

These can be reduced to i -j = 0, and respectively to i - i = 2 and
i-j = —1, provided that n | m;n; and n | m? (we can always do
this, by taking appropriate m;'s and n;'s!).
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Symplectic fermion quasi-Hopf algebra

Let C be the field of complex numbers, N a non-zero odd natural
number and g € k such that g = —i. The family of symplectic
fermion quasi-Hopf algebras, denoted in what follows by Oq(N),
were introduced in #. To have the simplest description for the
Yetter-Drinfeld coalgebras derived from Og(/N), in what follows we
will work with a slightly deformed version of Og(N) (relative to the
presentation of the Oq(N) given in °).

As an algebra, Og4(N) is the C-algebra generated by K and the

families {f[ | 1 <j < N}, with relations, 1 < j, t < N,

fj:l:K — —Kfjj:, G—i-f; 4 f;fj-‘r — 5j,tel7 G:I:fti _ _ftifjiv K4 =1
(22)

here e; := (1 — K?).
4V. Farsad, A. M. Gainutdinov, |. Runkel, Adv. Math. 400 (2022), 108-247.
®J. Berger, A. M. Gainutdinov, |. Runkel, J. Alg. 548 (2020), 96-119.
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The comultiplication A and counit € of O4(N) are determined by

AK) = KoK, e(K) =1, (23)

+ _ e + +\ 2
A(ff) = FEFR1+ws®fE, e(ff)=0, V1<j< N(24)

extended to the whole O4(N) as unital algebra morphisms;
Wt = (eo + iel)K, e = %(1 -+ KZ).

The reassociator ® of O4(N) and its inverse 1 are given by

¢ =181el+eeeaa(K-1), ¢ ' =1010l+e 06 (K3 —1)
(25)
where B4 := ey + g?(£i)Ve KN,

Note that our reassociator for Oq(N) differs from their

reassociator.
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Another different structure that we consider for O4(N) is the triple
that defines the antipode of the quasi-Hopf algebra O4(N). In our
definition, the antipode of O4(N) is determined by

S(K) = KUY = (e—e1)K, S(fF) = F(eoEie) K, a = By, B =1,

(26)
with S extended to the whole O4(N) as an anti-morphism of
algebras.

Consider the classical reassociator for k[C4] given by
3
o, = Z (—1)3[%]1,—,, ®1p ® 1.
a,b,c=0
There is a twist F such that ($2)F = ®. As for k¢,[Ca] we have a
natural QT-structure given by R, = ZUN "Y1, ®1,, we get for
free an R-matrix R, R = (Rx)F, for k(K), provided that ¢*> = —i.
In the basis given by the powers of K,
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3+q 2-(1+q)i 1-q 2+(1+q)i

1| 2+(1+q)i —(1+q) (1—q)i -1-2+gq
8 l1-gq ~(1-q)i —-(1-q) (1-2)i
2—(1—gq)i -1+2i+qg —(1-—q)i —(1+q)

R =

We don't have O4(N) = (¢/ x k(K) x )7, but one can show that
Oq(N) = ((e®f) x k(K))s. Actually, we computed the quasi-Hopf
algebra structure of (¢ x k(K) x )7 and transported to

((e®f) x k(K))x through the natural isomorphism

((e®F) x k(K))x ~ (e x k(K) x )7, and so we landed at the
infinite dimensional version of Oq(N): we don't get the relations
Gifti = —ftiij.i; one can add them by factorizing with the ideal
generated by them, a quasi-Hopf ideal actually.
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We can also consider the Serre relations for the infinite dimensional
version of Og4(N), by following the same idea as in the cyclic case
presented above (by taking m; = n; =2, for all i,j € I). Of
course, ¢ is the set of £, 's and § is the set of fi+'s
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THANK YOuU!!!
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