

New classes of Quasi-Hopf algebras

Blas Torrecillas

University of Almería, Spain

International Conference Hopf Algebras and Tensor Categories

TSIMF Sanya China, January 19-23, 2026

(joint work with D. Bulacu and D. Popescu)

Contents

- Preliminaries
- The double biproduct construction
- Deformations by 2-cocycles
- New classes of quasi-Hopf algebras
- Some examples

Preliminaries

- We characterise double biproducts as ordinary biproducts, and show that their deformations by 2-cocycles are double wreath quasi-quantum groups.
- We present examples of 2-cocycles from almost skew pairings in categories of Yetter-Drinfeld modules and show that various types of quasi-quantum groups known in the literature are of this type.
- We define a quasi-Hopf analogue of the Drinfeld-Jimbo quantum groups $U_q(\mathfrak{g})$.

Bespalov and Drabant showed that the Majid's double biproduct construction has a deep categorical nature.

- 1 Bespalov & Drabant, *J. Pure Appl. Alg.* **123** (1998), 105–129.
- 2 Majid, *Math. Proc. Camb. Phil. Soc.* **125** (1999), 151–192.

H a quasi-Hopf algebra

P. Schauenburg (2012) shows that there is a strongly monoidal equivalence between ${}^H\mathcal{M}_H^H$ and ${}^H\mathcal{YD}$, the Drinfeld center of ${}_H\mathcal{M}$

The following three notions are equivalent:

1. a braided Hopf algebra in ${}^H\mathcal{M}_H^H$
2. a left biproduct quasi-Hopf algebra $C \times H$ for some Hopf algebra C in ${}^H\mathcal{YD}$
3. a quasi-Hopf algebra A with a projection $\pi : A \rightarrow H$.

Explicit structures

- The algebras in ${}^H\mathcal{M}_H^H$ are (left) smash product algebras $C \# H$ between an algebra C in ${}^H\mathcal{YD}$ and H .
- $C \# H$ is the k -vector space $C \otimes H$ endowed with the multiplication given by

$$(c \# h)(c' \# h') = (x^1 \cdot c)(x^2 h_1 \cdot c') \# x^3 h_2 h',$$

for all $c, c' \in C$ and $h, h' \in H$ and unit $1_{C \# H} = 1_C \# 1_H$. We need only C an algebra in ${}^H\mathcal{M}$, the monoidal category of left H -modules, in order to get $C \# H$ a k -algebra; the algebra structure of C in ${}^H\mathcal{YD}$ is needed to regard $C \# H$ as an algebra in ${}^H\mathcal{M}_H^H$.

Some structures

- The coalgebras in ${}^H\mathcal{M}_H^H$ are (left) smash product coalgebras $C \bowtie H$ between a coalgebra C in ${}^H\mathcal{YD}$ and H , a coalgebra within the monoidal category ${}_H\mathcal{M}_H$ of H -bimodules.
- $C \bowtie H = C \otimes H$ as k -vector spaces, with comultiplication determined by

$$\begin{aligned}\Delta(c \bowtie h) = & (y^1 X^1 \cdot c_{\underline{1}} \bowtie y^2 Y^1 (x^1 X^2 \cdot c_{\underline{2}})_{\{-1\}} x^2 X_1^3 h_1) \\ & \otimes (y_1^3 Y^2 \cdot (x^1 X^2 \cdot c_{\underline{2}})_{\{0\}} \bowtie y_2^3 Y^3 x^3 X_2^3 h_2),\end{aligned}$$

for all $c \in C$ and $h \in H$, and counit $\varepsilon_{C \bowtie H} = \varepsilon_C \otimes \varepsilon_H$.

Explicit structures

- Thus, any bialgebra (resp. Hopf algebra) in ${}^H\mathcal{M}^H$ is of the form $C \otimes H$ for a certain bialgebra (resp. Hopf algebra) C in ${}^H\mathcal{YD}$, and is denoted by $C \times H$.
- $C \times H = C \# H$ as an algebra, $C \times H = C \bowtie H$ as a coalgebra and, moreover, it is a quasi-bialgebra (resp. quasi-Hopf algebra) with reassociator (resp. antipode) defined by

$$\Phi_{C \times H} = 1_C \times X^1 \otimes 1_C \times X^2 \otimes 1_C \times X^3,$$

$$(s'(c \times h) = (1_C \times S(X^1 p_1^1 c_{\{-1\}} h) \alpha) (X^2 p_2^1 \cdot S_C(c_{\{0\}}) \times X^3 p_2^2), \\ 1_C \times \alpha, 1_C \times \beta),$$

for all $c \in C$, $h \in H$, where we wrote $c \times h$ in place of $c \otimes h$ in order to distinguish the quasi-bialgebra structure on $C \otimes H$ given by the left biproduct construction.

The right handed version

- The algebras in ${}^H\mathcal{M}_H^H$ are the right smash product algebras $H \# B$ between an algebra B in \mathcal{YD}_H^H and H , where $H \# B$ is $H \otimes B$ equipped with multiplication and unit given by,
 $\forall b, b' \in B, h, h' \in H,$
$$(h \# b)(h' \# b') = hh'_1 x^1 \# (b \cdot h'_2 x^2)(b' \cdot x^3), \quad 1_{H \times B} = 1_H \times 1_B$$

- The coalgebras in ${}^H\mathcal{M}_H^H$ are the right smash product coalgebras $H \bowtie B$ between a coalgebra B in \mathcal{YD}_H^H and H , where $H \bowtie B$ is $H \otimes B$ endowed with the comultiplication and counit determined by

$$\begin{aligned} \Delta(h \bowtie b) &= (h_1 X_1^1 x^1 Y^1 y_1^1 \bowtie (b_1 \cdot X^2 x^3)_{(0)} \cdot Y^2 y_1^3) \\ &\quad \otimes (h_2 X_2^1 x^2 (b_1 \cdot X^2 x^3)_{(1)} Y^3 y^2 \bowtie b_2 \cdot X^3 y^3), \quad \varepsilon_{H \times B} = \varepsilon_H \otimes \varepsilon_B; \end{aligned}$$

- $H \times B$ is the right biproduct of B, H , a quasi-Hopf algebra with

$$\Phi_{H \times B} = X^1 \times 1_B \otimes X^2 \times 1_B \otimes X^3 \times 1_B,$$

$$(s^r(h \times b) = (\tilde{q}^1 X^1 \times S_B(b_{(0)}) \cdot \tilde{q}^2_1 X^2)(\beta S(hb_{(1)}) \tilde{q}^2_2 X^3) \times 1_B),$$

$$\alpha \times 1_B, \beta \times 1_B).$$

- Let $B \in \mathcal{YD}_H^H$. Define $\overline{B} \in {}_H^H\mathcal{YD}$ as the object B with structure given by

$$h \cdot b = b \cdot S^{-1}(h) \text{ and}$$

$$\lambda_{\overline{B}}(b) = g^1 S((b \cdot S^{-1}(f^1))_{(1)}) f^2 \otimes (b \cdot S^{-1}(f^1))_{(0)} \cdot S^{-1}(g^2).$$

- If B has an algebra structure in \mathcal{YD}_H^H then \overline{B} is an algebra in ${}_H^H\mathcal{YD}$ with multiplication

$$b \bullet b' = (b \cdot S^{-1}(f^1))_{(0)} [b' \cdot S^{-1}(f^2) (b \cdot S^{-1}(f^1))_{(1)}],$$

for all $b, b' \in B$, and unit equals 1_B , the unit of B (the juxtaposition denotes the multiplication of B in \mathcal{YD}_H^H).

- If B is a coalgebra in \mathcal{YD}_B^B then \overline{B} is a coalgebra in ${}_H^H\mathcal{YD}$ with counit equals $\underline{\varepsilon}_B$ and comultiplication defined, for all $b \in B$, by

$$\underline{\Delta}_{\overline{B}}(b) = b_{\underline{1}} \otimes b_{\underline{2}} := (b_{\underline{1}})_{(\underline{0})} \cdot X^2 p_2^1 S^{-1}(g^1) \otimes b_{\underline{2}} \cdot S^{-1}(g^2 S(X^1 p_1^1) (b_{\underline{1}})_{(\underline{1})} X^3 p^2)$$

where $(\underline{\Delta}_B : B \ni b \mapsto b_{\underline{1}} \otimes b_{\underline{2}} \in B \otimes B, \underline{\varepsilon}_B)$ is the coalgebra structure of B in \mathcal{YD}_H^H .

The isomorphism

- If B is a (co)algebra in \mathcal{YD}_H^H then \overline{B} is a (co)algebra in ${}_H^H\mathcal{YD}$ and the smash product algebras $H\#B$ and $\overline{B}\#H$ are isomorphic.
- A right biproduct quasi-bialgebra (resp. quasi-Hopf algebra) is always isomorphic to a left biproduct quasi-bialgebra (resp. quasi-Hopf algebra).
- In any of these situations the isomorphism is given by $\overline{\nu}_B$ defined by

$$\overline{\nu}_B(b \otimes h) = q^1 g^1 S(q_2^2 g_2^2 b_{(1)} \tilde{p}^2) f^1 h_1 \otimes b_{(0)} \cdot S(q_1^2 g_1^2 b_{(1)} \tilde{p}^1) f^2 h_2.$$

- Its inverse is

$$\overline{\nu}_B^{-1}(h \otimes b) = (b \cdot x^3)_{(0)} \cdot \tilde{p}^1 S^{-1}(h_1 x^1) \otimes h_2 x^2 (b \cdot x^3)_{(1)} \tilde{p}^2.$$

The natural condition

- Assume further that B, C satisfy the compatibility relation

$$b \otimes c = b_{(0)} \cdot c_{\{-1\}} \otimes b_{(1)} \cdot c_{\{0\}}, \quad \forall b \in B, c \in C.$$

- It is imposed by the fact that: since $Y = C \otimes H$ and $X = H \otimes B$ are bialgebras (resp. Hopf algebras) in ${}^H\mathcal{M}_H^H$, the tensor product algebra and coalgebra structure on $\underline{Z} := Y \otimes_H X$ afford a bialgebra (resp. Hopf algebra) structure on \underline{Z} in ${}^H\mathcal{M}_H^H$ if and only if $d_{Y,X} \circ d_{X,Y} = \text{Id}_{X \otimes_H Y}$, where d is the braiding of ${}^H\mathcal{M}_H^H$.
- Let X, Y be the objects of ${}^H\mathcal{M}_H^H$ defined by the bialgebras $C \in {}^H\mathcal{YD}$, and respectively $B \in \mathcal{YD}_H^H$, as in the above. Then the following assertions are equivalent:
 - $\underline{Z} = Y \otimes_H X$ is a bialgebra in ${}^H\mathcal{M}_H^H$;
 - $\widetilde{C \otimes B}$ is a bialgebra in ${}^H\mathcal{YD}$;
 - For all $c \in C$ and $b \in B$ the preceding relation holds.

Double biproduct quasi-Hopf algebras

- $\underline{Z} = Y \otimes_H X \equiv Z := C \otimes H \otimes B$ is a k -algebra with multiplication

$$(c \otimes h \otimes b)(c' \otimes h' \otimes b') = (y^1 \cdot c)(y^2 h_1 x^1 \cdot c') \otimes y^3 h_2 x^2 h'_1 z^1 \otimes (b \cdot x^3 h'_2 z^2)(b' \cdot z^3).$$

The unit of Z is $1_C \otimes 1_H \otimes 1_B$, i.e. as a k -algebra

$Z = C \# H \# B$, the two-sided smash product algebra of C, B and H^1 .

- Z is an H -bimodule coalgebra with comultiplication given by

$$\begin{aligned}\Delta_Z(c \otimes h \otimes b) &= [(c \bowtie h)_1 \cdot Y_1^1 t^1 Z^1 u_1^1 \otimes (b_1 \cdot Y^2 t^3)_{(0)} \cdot Z^2 u_2^1] \\ &\quad \otimes [(c \bowtie h)_2 \cdot Y_2^1 t^2 (b_1 \cdot Y^2 t^3)_{(1)} Z^3 u^2 \otimes b_2 \cdot Y^3 u^3] \\ &= [y^1 X^1 \cdot c_1 \otimes y^2 T^1 (z^1 X^2 \cdot c_2)_{\{-1\}} z^2 X_1^3 \cdot (h \bowtie b)_1] \\ &\quad \otimes [y_1^3 T^2 \cdot (z^1 X^2 \cdot c_2)_{\{0\}} \otimes y_2^3 T^3 z^3 X_2^3 \cdot (h \bowtie b)_2],\end{aligned}$$

and counit $\varepsilon_Z = \varepsilon_C \otimes \varepsilon_H \otimes \varepsilon_B$.

¹Bulacu, Panaite, Van Oystaeyen, Comm. Math. Phys. 266 (2006)

Double biproduct quasi-Hopf algebras

- We denote this coalgebra structure on Z by $C \bowtie H \bowtie B$.
- $C \times H \times B := C \# H \# B$ as an algebra.
- $C \times H \times B := C \bowtie H \bowtie B$ as a coalgebra.
- $C \times H \times B$ is a quasi-bialgebra with reassociator $1_C \times \Phi \times 1_B$, and
- a quasi-Hopf algebra with antipode

$$\begin{aligned} s(b \times h \times c) = & (1_C \times S(Y^1(z^1 x^1 \cdot c)_{\{-1\}} z^2 x_1^2 h_{(1,1)} y_1^1 X_1^1 t^1 p^1) \alpha \times 1_B) \\ & (\underline{S}_C(Y^2 \cdot (z^1 x^1 \cdot c)_{\{0\}}) \times Y^3 z^3 x_2^2 h_{(1,2)} y_2^1 X_2^1 t^2 \\ & \times \underline{S}_B((b \cdot y^3)_{(0)} \cdot X^3 t^3)) (1_C \times p^2 S(x^3 h_2 y^2 (b \cdot y^3)_{(1)} X^3) \times 1_B) \end{aligned}$$

and distinguished elements $1_C \times \alpha \times 1_B$ and $1_C \times \beta \times 1_B$.

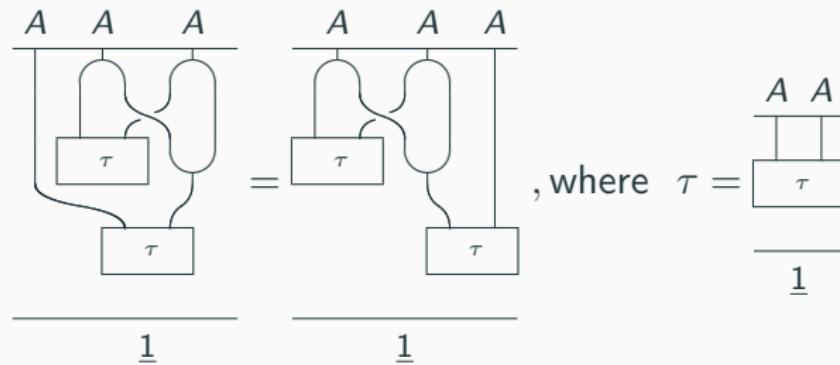
Double biproducts are biproducts

- $C \times H \times B \equiv (C \widetilde{\otimes} \overline{B}) \# H$ as an algebra;
- $C \times H \times B \equiv (C \widetilde{\otimes} \overline{B}) \bowtie H$ as a coalgebra;
- $C \times H \times B \equiv (C \widetilde{\otimes} \overline{B}) \times H$ as a quasi-Hopf algebra.
- In all these cases the isomorphism is produced by χ defined by

$$\chi(c \otimes h \otimes b) = (y^1 \cdot c \widetilde{\otimes} (b \cdot x^3)_{(0)} \cdot \tilde{p}^1 S^{-1}(y^2 h_1 x^1)) \otimes y^3 h_2 x^2 (b \cdot x^3)_{(1)} \tilde{p}^2.$$

2-cocycles in braided categories

- A 2-cocycle of a braided bialgebra A in (\mathcal{C}, c) is a morphism $\tau : A \otimes A \rightarrow \underline{1}$ in \mathcal{C} obeying $\tau(\underline{\eta}_A \otimes \text{Id}_A) = \underline{\varepsilon}_A = \tau(\text{Id}_A \otimes \underline{\eta}_A)$ and

$$\begin{array}{c} A \quad A \quad A \\ \hline \text{---} \\ \text{---} \end{array} \quad = \quad \begin{array}{c} A \quad A \quad A \\ \hline \text{---} \\ \text{---} \end{array} \quad , \text{ where } \tau = \begin{array}{c} A \quad A \\ \hline \text{---} \\ \text{---} \\ \hline \underline{1} \end{array}$$


and for simplicity we assumed \mathcal{C} strict monoidal.

- A 2-cocycle τ of a bialgebra A in (\mathcal{C}, c) is called invertible if it is convolution invertible

2-cocycles in braided categories

- Let τ be an invertible 2-cocycle of the bialgebra A .
- A_τ is the coalgebra A with unit $\underline{\eta}_A$ and multiplication

$$m_A^\tau := \begin{array}{c} \text{Diagram showing the multiplication } m_A^\tau \text{ in terms of the bialgebra } A. \\ \text{The diagram consists of two parallel horizontal lines labeled } A \text{ at the top and bottom.} \\ \text{On the left line, there is a box labeled } \tau. \\ \text{On the right line, there is a box labeled } \bar{\tau}. \\ \text{A complex web of strands connects the two lines, representing the braiding and multiplication operations.} \end{array} .$$

- A_τ is a bialgebra in \mathcal{C} and, moreover, a Hopf algebra with $\underline{S}_A^\tau := (\underline{u}_\tau \otimes \underline{S}_A \otimes \underline{u}_{\bar{\tau}})(\text{Id}_A \otimes \underline{\Delta}_A)\underline{\Delta}_A$, provided that so is A \underline{S}_A ;
- $\underline{u}_\tau := \tau(\text{Id}_A \otimes \underline{S}_A)\underline{\Delta}_A : A \rightarrow \underline{1}$, and similar for $\underline{u}_{\bar{\tau}}$.

Theorem

$(\mathcal{F}, \varphi_2, \varphi_0) : (\mathcal{C}, c) \rightarrow (\mathcal{D}, d)$ is a braided functor, A a bialgebra in \mathcal{C} .

(i) The map $\Psi : \text{Hom}_{\mathcal{C}}(A \otimes A, \underline{1}) \rightarrow \text{Hom}_{\mathcal{D}}(\mathcal{F}(A) \otimes \mathcal{F}(A), \underline{1})$ sending τ to

$$\tau_{\mathcal{F}} : \mathcal{F}(A) \otimes \mathcal{F}(A) \xrightarrow{\varphi_{2,A,A}} \mathcal{F}(A \otimes A) \xrightarrow{\mathcal{F}(\tau)} \mathcal{F}(\underline{1}) \xrightarrow{\varphi_0^{-1}} \underline{1},$$

is a morphism of monoids.

If $\tau : A \otimes A \rightarrow \underline{1}$ is a 2-cocycle of A then $\tau_{\mathcal{F}}$ is a 2-cocycle of $\mathcal{F}(A)$.

(ii) If \mathcal{F} is, moreover, a braided equivalence then Ψ is an isomorphism of monoids, so any 2-cocycle of $\mathcal{F}(A)$ equals $\tau_{\mathcal{F}}$ for a certain 2-cocycle τ of A in \mathcal{C} . Furthermore, τ is invertible if and only if so is $\tau_{\mathcal{F}}$, and $\mathcal{F}(A_{\tau}) = \mathcal{F}(A)_{\tau_{\mathcal{F}}}$ as bialgebras in \mathcal{D} .

The ideal case

Theorem

Let $A \in {}_H^H\mathcal{YD}$ be a bialgebra (resp. Hopf algebra) and $\vartheta : \mathcal{F}_I(A) \otimes_H \mathcal{F}_I(A) \rightarrow H$ an invertible 2-cocycle of $\mathcal{F}_I(A) := A \otimes H$ in ${}_H^H\mathcal{M}_H^H$. Then there exists an invertible 2-cocycle $\tilde{\vartheta}$ of A in ${}_H^H\mathcal{YD}$ such that $\mathcal{F}_I(A)_\vartheta = \mathcal{F}_I(A_{\tilde{\vartheta}})$ as bialgebras (resp. Hopf algebras) in ${}_H^H\mathcal{M}_H^H$. Consequently, if $(A \times H)_\vartheta$ is the quasi-bialgebra (resp. quasi-Hopf algebra) corresponding to the bialgebra (resp. Hopf algebra) $\mathcal{F}_I(A)_\vartheta$ in ${}_H^H\mathcal{M}_H^H$ then $(A \times H)_\vartheta = A_{\tilde{\vartheta}} \times H$ as quasi-bialgebras (resp. quasi-Hopf algebras).

- When $K = R \times H$, one can work over H ; K is a bimonoid in ${}_H\mathcal{M}_H$, and for such a context a theory of 2-cocycles and deformations produced by them exists.

The bimonoid case

- If $i : H \rightarrow K$ is a quasi-Hopf algebra morphism, K is an algebra in ${}_H\mathcal{M}_H$ via m_K and i .
- A normalized 2-cocycle of K is an H -bilinear morphism $\omega : K \otimes_H K \rightarrow k$ s.t. $\omega(1_K \otimes_H x) = \omega(x \otimes_H 1_K) = \varepsilon_K(x)$,
 $\omega(x_1 \otimes_H y_1) \omega(x_2 y_2 \otimes_H z) = \omega(y_1 \otimes_H z_1) \omega(x \otimes_H y_2 z_2)$.
- For $K = R \times H$, owing to ², giving an (invertible) normalized 2-cocycle σ on $R \times H$ is equivalent to giving an (invertible) normalized left H -linear morphism $\vartheta : R \widetilde{\otimes} R \rightarrow k$ obeying

$$\vartheta((s \widetilde{\otimes} t)_{\underline{1}}) \vartheta(r \widetilde{\otimes} \underline{m}_A((s \widetilde{\otimes} t)_{\underline{2}}) = \\ \vartheta((x^1 \cdot r \widetilde{\otimes} x^2 \cdot s)_{\underline{1}}) \vartheta(\underline{m}_A((x^1 \cdot r \widetilde{\otimes} x^2 \cdot s)_{\underline{1}}) \widetilde{\otimes} t).$$

- $R \widetilde{\otimes} R$ is $R \otimes R$ with the braided monoidal algebra, coalgebra structure given by the tensor product of R and itself in ${}_H^H\mathcal{YD}$.

²Bulacu, Popescu, T., Double wreath quasi-Hopf algebras, J. Algebra (2025)

2-cocycles for double biproducts $C \times H \times B$

- We consider almost (invertible) normalized 2-cocycles on $C \widetilde{\otimes} \overline{B}$ in ${}^H\mathcal{YD}$ of the form $\vartheta = \underline{\varepsilon}_C \otimes \Sigma \otimes \underline{\varepsilon}_B$ for a suitable k -linear $\Sigma : \overline{B} \widetilde{\otimes} C \rightarrow k$.
- We replace \overline{B} by an arbitrary bialgebra A in ${}^H\mathcal{YD}$ such that the tensor product algebra and coalgebra structures afford on $C \otimes A$ a braided bialgebra structure, denoted by $C \widetilde{\otimes} A$.

Theorem

ϑ is an almost (invertible) normalized 2-cocycle iff $\Sigma : A \otimes C \rightarrow k$ is left H -linear (convolution invertible in ${}_H\mathcal{M}$), and

$$\Sigma(1_A \widetilde{\otimes} c) = \underline{\varepsilon}_C(c), \quad \Sigma(a \widetilde{\otimes} 1_C) = \underline{\varepsilon}_A(a);$$

$$\Sigma(aa' \widetilde{\otimes} c) = \Sigma(X^1 \cdot a \widetilde{\otimes} x^3 X_2^3 \cdot c_2) \Sigma(x^1 X^2 \cdot a' \widetilde{\otimes} x^2 X_1^3 \cdot c_1);$$

$$\begin{aligned} \Sigma(a \otimes cc') &= \Sigma(y^1 X^1 x_1^1 \cdot a_1 \widetilde{\otimes} y^2 (X^2 x_2^1 \cdot a_2)_{[-1]} X^3 x^2 \cdot c) \\ &\quad \Sigma(y^3 \cdot (X^2 x_2^1 \cdot a_2)_{[0]} \widetilde{\otimes} x^3 \cdot c'). \end{aligned}$$

2-cocycles for double biproducts

When we take $A = \overline{B}$ as bialgebra in ${}^H\mathcal{YD}$, keeping in mind the bialgebra structure of \overline{B} , an almost dual skew pairing between \overline{B} , C is a k -linear morphism $\Sigma : B \otimes C \rightarrow k$ satisfying

$$\begin{aligned}\Sigma(b \cdot S^{-1}(h_1) \otimes h_2 \cdot c) &= \varepsilon(h)\Sigma(b \otimes c), \\ \Sigma(1_B \otimes c) &= \underline{\varepsilon}_C(c), \Sigma(b \otimes 1_C) = \underline{\varepsilon}_B(b); \\ \Sigma(b_{(0)}(b' \cdot b_{(1)}), c) &= \Sigma(b \cdot S^{-1}(X^1 g^1) \otimes x^3 X_2^3 \cdot c_{\underline{2}}) \\ &\quad \Sigma(b' \cdot S^{-1}(x^1 X^2 g^2) \otimes x^2 X_1^3 \cdot c_{\underline{1}}); \\ \Sigma(b \otimes cc') &= \Sigma((b_{\underline{1}})_{(\underline{0})} \cdot Y^2 p_2^1 S^{-1}(y^1 X^1 x_1^1 G^1) \otimes \\ &\quad y^2 g^1 S((b_{\underline{2}} \cdot S^{-1}(f^1 X^2 x_2^1 G^2 S(Y^1 p_1^1)(b_{\underline{1}})_{(\underline{1})} Y^3 p^2))_{(1)}) f^2 X^3 x^2 \cdot c) \\ &\quad \Sigma((b_{\underline{2}} \cdot S^{-1}(f^1 X^2 x_2^1 G^2 S(Y^1 p_1^1)(b_{\underline{1}})_{(\underline{1})} Y^3 p^2))_{(0)} \cdot S^{-1}(y^3 g^2) \\ &\quad \otimes x^3 \cdot c').\end{aligned}$$

2-cocycles for double biproducts

- Moving backwards, $\Sigma : B \otimes C \rightarrow k$ defines ϑ that defines ω , the later being a normalized invertible 2-cocycle on $(C\widetilde{\otimes} B) \times H$ over H . Explicitly,
 $\omega : ((C\widetilde{\otimes} B) \times H) \otimes_H ((C\widetilde{\otimes} B) \times H) \rightarrow k$ is given by
$$\begin{aligned}\omega((c\widetilde{\otimes} b) \times h \otimes_H (c'\widetilde{\otimes} b') \times h') &= \varepsilon(h')\vartheta(c\widetilde{\otimes} b \otimes h \cdot (c'\widetilde{\otimes} b')) \\ &= \varepsilon(h')\varepsilon_B(b')\Sigma(b \otimes h \cdot c'),\end{aligned}$$
for all $b' \in B$, $c, c' \in C$ and $h, h' \in H$.
- At a first sight is quite impossible to find such a Σ . But, using the quasi-Hopf algebra isomorphism
 $\chi : C \times H \times B \rightarrow (C\widetilde{\otimes} B) \times H$ one can see that the Σ 's are in a one to one correspondence to certain H -balanced morphisms
 $\sigma : B \otimes A \rightarrow k$, morphisms that can be determined much more easily.

2-cocycles for double biproducts

Theorem

Let H be a quasi-Hopf algebra, $C \in {}_H^H\mathcal{YD}$ and $B \in \mathcal{YD}_H^H$ braided Hopf algebras, and \overline{B} the braided Hopf algebra in ${}_H^H\mathcal{YD}$ associated to B . Then there is a one to one correspondence between:

- (i) almost (invertible) dual skew parings $\Sigma : \overline{B} \otimes C \rightarrow k$, and
- (ii) H -balanced morphisms $\sigma : B \otimes C \rightarrow k$ satisfying

$$\sigma(b \otimes cc') = \sigma(b\underline{1} \otimes a)\sigma(b\underline{2} \otimes a'),$$

$$\sigma(bb' \otimes c) = \sigma(b \otimes b'_{(1)} \cdot c\underline{2})\sigma(b'_{(0)} \otimes c\underline{1}').$$

$(C \times H \times B)^{\widehat{\sigma}}$ and $((C \widetilde{\otimes} \overline{B}) \times H)^{\omega}$ are isomorphic quasi-Hopf algebras.

Double biproduct quasi-Hopf algebras of dimension 32

- $H_{\pm}(8)$ are the quasi-Hopf algebras introduced in ³.
- As k -algebras, $H_{\pm}(8)$ are unital, generated by g, x with relations $g^2 = 1$, $x^4 = 0$ and $gx = -gx$.
- The (non-coassociative) coalgebra structures of $H_{\pm}(8)$ are given by

$$\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1,$$

$$\Delta(x) = x \otimes (p_+ \pm ip_-) + 1 \otimes p_+ x + g \otimes p_- x, \quad \varepsilon(x) = 0,$$

extended as algebra morphisms, where $p_{\pm} = \frac{1}{2}(1 \pm g)$.

- $\{g^a x^b \mid 0 \leq a \leq 1, 0 \leq b \leq 3\}$ is a common basis for $H_{\pm}(8)$, two quasi-Hopf algebras with reassociator $\Phi = 1 \otimes 1 \otimes 1 - 2p_- \otimes p_- \otimes p_-$ and antipode defined by $S(g) = g$, $S(x) = -x(p_+ \pm ip_-)$, extended as an anti-algebra morphism, and distinguished elements $\alpha = g$ and $\beta = 1$.

³P. Etingof, S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2, Math. Res. Lett. **11** (2004), 685–696.

Double biproduct quasi-Hopf algebras of dimension 32

- $H_{\pm}(8)$ contain $H(2)$ as a quasi-Hopf subalgebra.
- $H(2)$ is the group algebra of k and the cyclic group $\langle g \rangle$, a 2-dimensional quasi-Hopf algebra with coalgebra structure, reassociator Φ and antipode (S, α, β) given by the same relations as in the case of $H_{\pm}(8)$.
- The biproduct quasi-Hopf algebras that identify to $H_{\pm}(8)$ as quasi-Hopf algebras are defined by the following braided Hopf algebras $R_{\pm} \in {}_{H(2)}^{H(2)}\mathcal{YD}$.
- As vector spaces, R_{\pm} are generated by 1 , $u_{\pm} := (p_- \pm ip_+)x$, $v := gx^2$ and $w_{\pm} := (p_- \mp ip_+)x^3$, and are Yetter-Drinfeld modules over $H(2)$ with structures defined by

$$g \triangleright 1 = 1, \quad g \triangleright u_{\pm} = -u_{\pm}, \quad g \triangleright v = v, \quad g \triangleright w_{\pm} = -w_{\pm};$$

$$1 \mapsto 1 \otimes 1, \quad u_{\pm} \mapsto (p_+ \pm ip_-) \otimes u_{\pm}, \quad v \mapsto 1 \otimes v \text{ and}$$

$$w_{\pm} \mapsto (p_+ \pm ip_-) \otimes w_{\pm}.$$

Double biproduct quasi-Hopf algebras of dimension 32

- R_{\pm} are unital braided algebras with unit 1 and multiplication • determined by

$$u_{\pm} \bullet u_{\pm} = \mp iv, \quad u_{\pm} \bullet v = w_{\pm}, \quad v \bullet u_{\pm} = -w_{\pm},$$

$$u_{\pm} \bullet w_{\pm} = v \bullet v = v \bullet w_{\pm} = w_{\pm} \bullet u_{\pm} = w_{\pm} \bullet v = w_{\pm} \bullet w_{\pm} = 0,$$

- and counital braided coalgebras with counits $\underline{\varepsilon}_{\pm}$ and comultiplications $\underline{\Delta}_{\pm}$ given by $\underline{\varepsilon}_{\pm}(1) = 1$,
 $\underline{\varepsilon}_{\pm}(u_{\pm}) = \underline{\varepsilon}_{\pm}(v) = \underline{\varepsilon}_{\pm}(w_{\pm}) = 0$,

$$\underline{\Delta}_{\pm}(u_{\pm}) = 1 \otimes u_{\pm} + u_{\pm} \otimes 1,$$

$$\underline{\Delta}_{\pm}(v) = v \otimes 1 + 1 \otimes v - \omega_{\mp} u_{\pm} \otimes u_{\pm}, \quad \text{where } \omega_{\mp} := 1 \mp i, \text{ and}$$

$$\underline{\Delta}_{\pm}(w_{\pm}) = w_{\pm} \otimes 1 + 1 \otimes w_{\pm} \pm iu_{\pm} \otimes v \mp iv \otimes u_{\pm}.$$

- Finally, the braided antipode \underline{S}_{\pm} of R_{\pm} is characterized by

$$\underline{S}_{\pm}(1) = 1, \quad \underline{S}_{\pm}(u_{\pm}) = -u_{\pm}, \quad \underline{S}_{\pm}(v) = \pm iv, \quad \underline{S}_{\pm}(w_{\pm}) = \pm iw_{\pm}.$$

Double biproduct quasi-Hopf algebras of dimension 32

- For Take $C = R_+$ and $\overline{B} = R_-$, by using the structures of C, \overline{B} in ${}_{H(2)}^{H(2)}\mathcal{YD}$, one can check easily that $c_{R_+, R_-} \circ c_{R_-, R_+} = \text{Id}_{R_- \otimes R_+}$ (c is the braiding of ${}_{H(2)}^{H(2)}\mathcal{YD}$).
- Thus $R := R_+ \widetilde{\otimes} R_-$ is a braided Hopf algebra in ${}_{H(2)}^{H(2)}\mathcal{YD}$ and $R \times H(2)$, a 32-dimensional quasi-Hopf algebra, identifies to a double biproduct quasi-Hopf algebra.
- The 2-cocycles of $R \times H$ defined by an almost dual pairing Σ between R_- and R_+ are parametrized by $a \in k$, since the only non-zero values of Σ are $\Sigma(1 \otimes 1) = 1$, $\Sigma(u_- \otimes u_+) = a$, $\Sigma(v \otimes v) = -\omega_+ a^2$ and $\Sigma(w_- \otimes w_+) = -\omega_- a^3$.
- Having Σ , we have a 2-cocycle ω on $R \times H$, and therefore we can apply the bosonization process to $R \times H$ and ω .

Quasi free (left) Yetter-Drinfeld datum

Let H be a quasi-Hopf algebra with bijective antipode.

Definition

A quasi free (left) Yetter-Drinfeld datum over H (free YD -datum for short) is a triple $((e_i)_{i \in I}, (\chi_i)_{i \in I}, R)$ consisting of a family of elements $(e_i)_{i \in I}$ indexed by a non-empty set I , a family of characters $(\chi_i)_{i \in I}$ of H indexed by I and an element $R \in H \otimes H$ satisfying $(\text{Id}_H \otimes \varepsilon)(R) = 1$ and

$$\begin{aligned} (\text{Id} \otimes \Delta)(R) &= (\Phi_{231})^{-1} R_{13} \Phi_{213} R_{12} (\Phi_{123})^{-1} \\ &= x^3 R^1 X^2 r^1 y^1 \otimes x^1 X^1 r^2 y^2 \otimes x^2 R^2 X^3 y^3, \end{aligned} \quad (1)$$

$$\Delta^{op}(h)R = R\Delta(h)$$

$$\text{i.e. } h_2 R^1 \otimes h_1 R^2 = R^1 h_1 \otimes R^2 h_2, \quad \forall h \in H, \quad (2)$$

where $R = R^1 \otimes R^2 = r^1 \otimes r^2$ are two copies of R .

- Note that the three conditions imposed to the above $R \in H \otimes H$ are part of the definition of an R -matrix for H . Thus, a couple (H, R) with $R \in H \otimes H$ obeying $\varepsilon(R^2)R^1 = 1$, (0.1) and (0.2) will be called in what follows a (left) semi-quasitriangular quasi-Hopf algebra (semi-QT for short). Also, we say that R is a (left) semi R -matrix for H .
- A semi R -matrix for H is always invertible, provided that S is bijective. As in the quasitriangular case, one can see that the inverse of R is given by

$$R^{-1} := \tilde{q}^2 y_2^2 R^1 p^1 \otimes y^3 S^{-1}(\tilde{q}^1 y_1^2 R^2 p^2) y^1 \quad (3)$$

$$= \tilde{q}_1^2 X^1 R^1 p^1 \otimes \tilde{q}_2^2 X^3 S^{-1}(\tilde{q}^1 X^1 R^2 p^2). \quad (4)$$

Lemma

Giving a left Yetter-Drinfeld module structure on a one dimensional vector space is equivalent to giving a pair (χ, \mathfrak{K}) consisting of a character χ of H and an element $\mathfrak{K} \in H$ such that $\varepsilon(\mathfrak{K}) = 1$, $\chi(h_2)h_1\mathfrak{K} = \chi(h_1)\mathfrak{K}h_2$, for all $h \in H$, and

$$\Delta(\mathfrak{K}) = \chi(x^3 X^2 y^1) x^1 X^1 \mathfrak{K} y^2 \otimes x^2 \mathfrak{K} X^3 y^3. \quad (5)$$

Corollary

If H possess a semi R-matrix R , any character χ of H determines a left Yetter-Drinfeld module structure on each one dimensional vector space.

Denote by \mathcal{YD}_1 the set of pairs (\mathfrak{K}, χ) consisting of an element $\mathfrak{K} \in H$ and a character χ of H such that, for all $h \in H$,

$$\begin{aligned}\Delta(\mathfrak{K}) &= \chi(x^3 X^2 y^1) x^1 X^1 \mathfrak{K} y^2 \otimes x^2 \mathfrak{K} X^3 y^3 \\ \chi(h_2) h_1 \mathfrak{K} &= \chi(h_1) \mathfrak{K} h_2 \\ \varepsilon(\mathfrak{K}) &= 1\end{aligned}\tag{6}$$

Lemma

For $(\mathfrak{K}_1, \chi_1), (\mathfrak{K}_2, \chi_2) \in \mathcal{YD}_1$, define

$$(\mathfrak{K}_1, \chi_1) * (\mathfrak{K}_2, \chi_2) := (\chi_1(X^2 x^1 Y^1) \chi_2(X^3 x^3 Y^2) X^1 \mathfrak{K}_1 x^2 \mathfrak{K}_2 Y^3, \chi_1 \chi_2).$$

Then, the following assertions hold:

- (i) The operation $*$ is an associative product in \mathcal{YD}_1 ;
- (ii) $(1, \varepsilon)$ is a neutral element of \mathcal{YD}_1 , and with respect with it any element (\mathfrak{K}, χ) is invertible, with inverse given by $(\mathfrak{K}^{-1}, \chi^{-1})$, where χ^{-1} is the (convolution) inverse of χ and

$$\mathfrak{K}^{-1} := \chi(f^2 g^1) S^{-1}(f^1 \mathfrak{K} g^2), \quad (7)$$

where $f = f^1 \otimes f^2$ is the Drinfeld twist and $g = g^1 \otimes g^2$ is its inverse;

- (iii) $(\mathcal{YD}_1, *)$ is a commutative group.

- Let $\mathcal{E} = (e_i)_i$ be a family of elements indexed by a non-empty set I and $(\chi_i)_{i \in I}$ a family of characters of H .
- A (left) quasi-word in alphabet \mathcal{E} is a sequence

$$w = w(i_1, \dots, i_n) := e_{i_1}(e_{i_2}(e_{i_3} \cdots (e_{i_{n-1}} e_{i_n}) \cdots))$$

with n a non-zero natural number (called in what follows the length of w) and $i_1, \dots, i_n \in I$; we include also the empty word \emptyset .

- The presence of the parenthesis is justified by the fact that the algebra we want to build might be non-associative, as for an algebra in ${}^H\mathcal{YD}$ the associativity of the multiplication is controlled by the associativity constraint of ${}^H\mathcal{YD}$, and thus by the reassociator Φ .

We define the (left) quasi-free k -algebra on the set \mathcal{E} , denoted by $k\{(\mathcal{E})$, as being the k -vector space with basis the all (left) quasi-words in alphabet \mathcal{E} , including the empty word \emptyset ; the multiplication between two non-empty quasi-words w and $w' = w(i'_1, \dots, i'_m) = e_{i'_1}(e_{i'_2}(e_{i'_3} \dots (e_{i'_{m-1}} e_{i'_m}) \dots))$ is a scalar multiple of the "concatenation" of the two quasi-words,

$$ww' = \kappa w(i_1, \dots, i_n, i'_1, \dots, i'_m) = \kappa e_{i_1}(e_{i_2} \dots (e_{i_{n-1}}(e_{i_n}(e_{i'_1}(\dots(e_{i'_{m-1}} e_{i'_m}) \dots)))$$

with the scalar κ determined by the following rule:

$$(e_{i_1} e_{i_2}) e_{i_3} = \chi_{i_1}(X^1) \chi_{i_2}(X^2) \chi_{i_3}(X^3) e_{i_1}(e_{i_2} e_{i_3}), \quad \forall i_1, i_2, i_3 \in I, \quad (8)$$

extended to arbitrary non-empty quasi-words by considering $\chi_{w(i_1, \dots, i_n)} := \chi_{i_1}(\chi_{i_2} \dots (\chi_{i_{n-1}} \chi_{i_n}) \dots)$; more generally, if the order of the parenthesis in a concatenation is not the standard one then we adapt the definition of χ associated to concatenation accordingly. The unit is the empty word.

Proposition

Let H be a quasi-Hopf algebra, $\mathcal{E} = (e_i)_{i \in I}$ a family of elements and $(\mathfrak{K}_i, \chi_i)_{i \in I}$ a family with elements in ${}^H\mathcal{YD}_1$. Then $k\{(\mathcal{E})$ admits a unique algebra structure in ${}^H\mathcal{YD}$ such that, for all $h \in H$ and $i \in I$,

$$h \cdot e_i = \chi_i(h)e_i \text{ and } \lambda(e_i) = \mathfrak{K}_i \otimes e_i, \quad (9)$$

where λ is the left coaction of H on $k\{(\mathcal{E})$.

Lemma

Let $\iota : \mathcal{E} \hookrightarrow k\{(\mathcal{E})$ be the inclusion map and A an algebra in ${}^H\mathcal{YD}$. Then, for any map $f : \mathcal{E} \rightarrow A$ obeying, for all $h \in H$ and $i \in I$,

$$\chi_i(h)f(e_i) = h \cdot f(e_i) \text{ and } \mathfrak{K}_i \otimes f(e_i) = f(e_i)_{[-1]} \otimes f(e_i)_{[0]}, \quad (10)$$

there exists a unique morphism $\bar{f} : k\{(\mathcal{E}) \rightarrow A$ of algebras in ${}^H\mathcal{YD}$ such that $\bar{f}\iota = f$.

- For any $1 \leq s \leq n$, denote by $S_{s,n-s}$ the set of $(s, n-s)$ -shuffles, that is the set of permutations $\sigma \in S_n$ for which $\sigma(1) < \dots < \sigma(s)$ and $\sigma(s+1) < \dots < \sigma(n)$.
- It is well-known that $S_{s,n-s}$ has $\binom{n}{s}$ elements, so S_n contains in total 2^n shuffles; we included also $S_{0,n} := \{e\} = S_{n,0}$, e being the identical permutation of S_n .
- For $\sigma \in S_n$, we denote by $\text{Inv}(\sigma)$ the set of inversions of σ ; by convention, if $(u, v) \in \text{Inv}(\sigma)$ then $u < v$, and so $\sigma(u) > \sigma(v)$.

Proposition

There is a unique coalgebra structure $(\underline{\Delta}, \underline{\varepsilon})$ on $k\{(\mathcal{E})\}$ in ${}^H_H\mathcal{YD}$ such that the comultiplication $\underline{\Delta}$ is a morphism of algebras in ${}^H_H\mathcal{YD}$ and $\underline{\Delta}(e_i) = e_i \otimes \mathbf{1} + \mathbf{1} \otimes e_i$, for all $i \in I$. Furthermore, for any quasi-word $w = w(i_1, \dots, i_n)$ we have

$$\begin{aligned} \underline{\Delta}(w) &= \sum_{s=0}^n \sum_{\sigma \in S_{s, n-s}} \prod_{u=1}^n \left(\prod_{(u, v) \in \text{Inv}(\sigma^{-1})} \chi_{i_v} \right) (\mathfrak{K}_{i_u}) & (11) \\ & w(i_{\sigma(1)}, \dots, i_{\sigma(s)}) \otimes w(i_{\sigma(s+1)}, \dots, i_{\sigma(n)}), \end{aligned}$$

and the counit $\underline{\varepsilon}$ is a morphism of algebras in ${}^H_H\mathcal{YD}$ determined by $\underline{\varepsilon}(e_i) = 0$, for all $i \in I$. Consequently, $k\{(\mathcal{E})\}$ is a bialgebra in ${}^H_H\mathcal{YD}$.

Theorem

Let $\mathcal{E} = (e_i)_{i \in I}$ be a family of elements and $(\mathfrak{K}_i, \chi_i)_{i \in I}$ a family of elements of \mathcal{YD}_1 . Then, the (left) quasi-free algebra on the set \mathcal{E} , $k\{(\mathcal{E})$ is a braided Hopf algebra in ${}^H\mathcal{YD}$ with the following structure:

- $k\{(\mathcal{E})$ is a left Yetter-Drinfeld module with H -action defined by $h \cdot \mathbf{1} = \varepsilon(h)\mathbf{1}$ and $h \cdot w(i_1, \dots, i_n) = \chi_w(h)w(i_1, \dots, i_n)$, for all $h \in H$ and non-empty quasi-word $w(i_1, \dots, i_n)$, and H -coaction determined by $\mathbf{1} \mapsto \mathbf{1} \otimes \mathbf{1}$ and $w = w(i_1, \dots, i_n) \mapsto \mathfrak{K}_w \otimes w$;
- the multiplication m of $k\{(\mathcal{E})$ is given by (8) and the unit is the empty word $\mathbf{1}$;
- the comultiplication Δ of $k\{(\mathcal{E})$ is defined by $\underline{\Delta}(\mathbf{1}) = \mathbf{1} \otimes \mathbf{1}$ and (11), while the counit ε of $k\{(\mathcal{E})$ is defined by $\underline{\varepsilon}(\mathbf{1}) = 1$ and $\underline{\varepsilon}(w) = 0$, for any non-empty quasi-word w ;

Theorem (Continued)

- the braided antipode \underline{S} of $k\{(\mathcal{E})\}$ is determined by $\underline{S}(\mathbf{1}) = \mathbf{1}$, $\underline{S}(e_i) = -e_i$, $\underline{S}(e_{i_1} e_{i_2}) = \chi_{i_2}(\mathfrak{K}_1) e_{i_2} e_{i_1}$ and

$$\begin{aligned} \underline{S}(w) = & (-1)^n \left(\prod_{j=2}^n \chi_{i_j} \cdots \chi_{i_n}(\mathfrak{K}_{i_{j-1}}) \right) \left(\prod_{j=3}^n \right. \\ & \left. \chi_{i_j}(X^1) \chi_{i_{j-1}} \cdots \chi_{i_2}(X^2) \chi_{i_1}(X^3) \right) w(i_n, \dots, i_1) \end{aligned} \quad (12)$$

for any non-empty quasi-word $w = w(i_1, \dots, i_n)$ of length $n \geq 3$.

Corollary

Let H and $\{(\mathfrak{K}_i, \chi_i)\}_{i \in I}$ as previously. Given a family of symbols $\mathcal{E} = (E_i)_{i \in I}$, the biproduct quasi-Hopf algebra \mathfrak{e} , associated to the braided Hopf algebra $k\{(\mathcal{E})$, admits the following presentation:

- **Algebra Structure:** As a unital associative algebra, \mathfrak{e} is generated by the family $\{E_i\}_{i \in I}$ and H , subject to the relations:

$$hE_i = \chi_i(h_1)E_ih_2$$

for all $i \in I$ and $h \in H$.

- **Coalgebra Structure:** The comultiplication $\Delta_{\mathfrak{e}}$ and the counit $\varepsilon_{\mathfrak{e}}$ are determined by:

$$\begin{aligned}\Delta_{\mathfrak{e}}(E_i) &= \chi_i(x^1)E_ix^2 \otimes x^3 + \chi_i(X^2x^1)X^1\mathfrak{K}_ix^2 \otimes E_iX^3x^3, \\ \Delta_{\mathfrak{e}}(h) &= \Delta(h),\end{aligned}$$

Corollary (continued) and

$$\varepsilon_{\mathfrak{e}}(E_i) = 0, \quad \varepsilon_{\mathfrak{e}}(h) = \varepsilon(h),$$

for all $i \in I$ and $h \in H$. These maps are extended to all of \mathfrak{e} as algebra homomorphisms.

- **Antipode:** The antipode $S_{\mathfrak{e}}$ is defined by:

$$S_{\mathfrak{e}}(E_i) = -\chi_i(X^1 p_2^1) S(X^1 p_1^1 \mathfrak{K}_i) \alpha E_i X^3 p^2 \quad \text{and} \quad S_{\mathfrak{e}}(h) = S(h),$$

for all $i \in I$ and $h \in H$, extended as an algebra anti-homomorphism.

- **Quasi-Hopf Structure:** The Drinfeld associator and the distinguished elements α, β coincide with those of H .

The right version of the quasi free algebra

Consider $\mathcal{F} = (f_j)_{j \in J}$ a family of elements indexed by a non-empty set J and $(\bar{\chi}_j)_{j \in J}$ a family of characters of H . For any $j \in J$, kf_j as a right H -module via the action given by $\bar{\chi}_j$: $f_j \cdot h = \bar{\chi}_j(h)f_j$, for all $h \in H$. Then, kf_j is, moreover, a right Yetter-Drinfeld module over H if and only if there exists an element \mathfrak{G}_j in H such that,

$$\begin{aligned}\Delta(\mathfrak{G}_j) &= \bar{\chi}_j(y^3 X^2 x^1) y^1 X^1 \mathfrak{G}_j x^2 \otimes y^2 \mathfrak{G}_j X^3 x^3, \\ \bar{\chi}_j(h_1) \mathfrak{G}_j h_2 &= \bar{\chi}_j(h_2) h_1 \mathfrak{G}_j, \\ \varepsilon(\mathfrak{G}_j) &= 1,\end{aligned}\tag{13}$$

for all $h \in H$. Denote by \mathcal{YD}'_1 the set of couples $(\mathfrak{G}, \bar{\chi})$ with $\bar{\chi}$ a character of H and \mathfrak{G} an element of H satisfying (13). \mathcal{YD}'_1 is a commutative group under the law of composition

$$(\mathfrak{G}_1, \bar{\chi}_1)(\mathfrak{G}_2, \bar{\chi}_2) = (\mathfrak{G}_1 \diamond \mathfrak{G}_2, \bar{\chi}_1 \bar{\chi}_2), \text{ where}$$

$$\mathfrak{G}_1 \diamond \mathfrak{G}_2 := \chi_1(X^2 x^1 Y^1) \chi_2(X^3 x^3 Y^2) X^1 \mathfrak{G}_1 x^2 \mathfrak{G}_2 Y^3.$$

A right quasi-word in alphabet \mathcal{F} is a sequence

$v = v(j_1, \dots, j_n) := ((\dots((f_{j_1} f_{j_2}) f_{j_3}) \dots) f_{j_{n-1}}) f_{j_n}$ with n a non-zero natural number (called the length of v) and $j_1, \dots, j_n \in J$; we include also the empty word \emptyset .

We define the right quasi-free k -algebra on the set \mathcal{F} , denoted by $k\{\mathcal{F}\}$, as being the k -vector space with basis the all right quasi-words in alphabet \mathcal{F} , including the empty word \emptyset ; the multiplication between v and

$v' = v(j'_1, \dots, j'_m) = (\dots((f_{j'_1} f_{j'_2}) f_{j'_3}) \dots f_{j'_{m-1}}) f_{j'_m}$ is a scalar multiple of the "concatenation" of the two quasi-words,

$$\begin{aligned} vv' &= \kappa' v(j_1, \dots, j_n, j'_1, \dots, j'_m) = \\ &\kappa' (\dots (((\dots (f_{j_1} f_{j_2}) \dots f_{j_{n-1}}) f_{j_n}) f_{j'_1}) \dots f_{j'_{m-1}}) f_{j'_m}, \end{aligned} \quad (14)$$

with the scalar κ' determined by the following rule:

$$(f_{j_1} f_{j_2}) f_{j_3} = \bar{\chi}_{j_1}(x^1) \bar{\chi}_{j_2}(x^2) \bar{\chi}_{j_3}(x^3) f_{j_1} (f_{j_2} f_{j_3}), \quad \forall j_1, j_2, j_3 \in J. \quad (15)$$

To perform the **double biproduct** we need the compatibility relation, if $C = \mathfrak{e}$ is the Hopf algebra in ${}^H\mathcal{YD}$ and $B = \mathfrak{f}$ is the Hopf algebra in \mathcal{YD}_H^H then for all $b \in B$ and $c \in C$,

$$b \otimes c = b_{(0)} \cdot c_{[-1]} \otimes b_{(1)} \cdot c_{[0]}.$$

Thus, for our structures and $b = v$, $c = w$, the above condition specializes as $v \otimes w = \bar{\chi}_v(\mathfrak{K}_w)\chi_w(\mathfrak{G}_v)v \otimes w$. Hence, we must have $\bar{\chi}_v(\mathfrak{K}_w)\chi_w(\mathfrak{G}_v) = 1$, for all v and w . This is equivalent to $\bar{\chi}_j(\mathfrak{K}_i)\chi_i(\mathfrak{G}_j) = 1$, for all $(i, j) \in I \times J$.

This is satisfied working with \mathfrak{K}_i 's and the \mathfrak{G}_j 's defined by an R -matrix of H , since $\mathfrak{K}_w = \chi_w(R^1)R^2$ and $\mathfrak{G}_v = \bar{\chi}_v(\bar{R}^2)\bar{R}^1$, and therefore

$$\begin{aligned} \bar{\chi}_v(\mathfrak{K}_w)\chi_w(\mathfrak{G}_v) &= \chi_w(R^1)\bar{\chi}_v(R^2)\bar{\chi}_v(\bar{R}^2)\chi_w(\bar{R}^1) \\ &= \chi_w(R^1\bar{R}^1)\bar{\chi}_v(R^2\bar{R}^2) = 1, \end{aligned}$$

as needed.

Proposition

Suppose that \mathfrak{e} and \mathfrak{f} are compatible, in the sense that

$\bar{\chi}_j(\mathfrak{K}_i)\chi_i(\mathfrak{G}_j) = 1$, for all $(i, j) \in I \times J$. Then, the double biproduct quasi-Hopf algebra of \mathfrak{e} and \mathfrak{f} over H , denoted by

$DB_H(\mathfrak{e}, \mathfrak{f}) = \mathfrak{e} \times H \times \mathfrak{f}$, can be described as follows:

- as an associative algebra, $DB_H(\mathfrak{e}, \mathfrak{f})$ is unital, generated by the elements E_i 's, F_j 's and H with relations

$$hE_i = \chi_i(h_1)E_ih_2, \quad F_jh = \bar{\chi}_j(h_2)h_1F_j, \quad E_iF_j = F_j,$$

for all $(i, j) \in I \times J$ and $h \in H$;

- the quasi-coalgebra structure of $DB_H(\mathfrak{e}, \mathfrak{f})$ is defined by

$$\Delta(E_i) = \chi_i(x^1)E_i x^2 \otimes x^3 + \chi_i(X^2 x^1)X^1 \mathfrak{K}_i x^2 \otimes E_i X^3 x^3, \quad \varepsilon(E_i) = 0,$$

$$\Delta(F_j) = \bar{\chi}_j(x^3)x^1 \otimes x^2 F_j + \bar{\chi}_j(x^3 X^2)x^1 F_j \otimes x^2 \mathfrak{G}_j X^3, \quad \varepsilon(F_j) = 0,$$

for all $(i, j) \in H$, and the restriction of Δ (resp. ε) to H equals the comultiplication of H (resp. the counit of H);

Proposition (Continued)

- with the above structures $DB_H(\mathfrak{e}, \mathfrak{f})$ is a quasi-bialgebra with reassociator Φ and, moreover, a quasi-Hopf algebra with antipode S given by the distinguished elements α, β and

$$S(E_i) = -\chi_i(X^1 p_2^1) S(X^1 p_1^1 \mathfrak{K}_i) \alpha E_i X^3 p^2,$$

$$S(F_j) = -\bar{\chi}_j(\tilde{q}_1^2 X^2) \tilde{q}^1 X^1 F_j \beta S(\mathfrak{G}_j \tilde{q}_2^2 X^3),$$

for all $i \in I$ and $j \in J$, extended as an anti-morphism of algebras and such that its restriction to H equals S .

A double biproduct can be always identified, up to an isomorphism, with a left (or right) biproduct. The first step is to associate to \mathfrak{f} , a braided Hopf algebra $\bar{\mathfrak{f}}$ in ${}^H\mathcal{YD}$.

Proposition

$\bar{\mathfrak{f}} = \mathfrak{f}$ as a vector space, and a braided Hopf algebra in ${}^H\mathcal{YD}$ with structure given by:

- $\bar{\mathfrak{f}}$ is a left H -module with action defined by $h \cdot f_j = \bar{\chi}_j^{-1}(h)f_j$, for all $h \in H$, extended to the whole space $\bar{\mathfrak{f}}$ by using $h \cdot (\mathfrak{b}\mathfrak{b}') = (h_1 \cdot \mathfrak{b})(h_2 \cdot \mathfrak{b}')$, and a left YD -module over H with coaction determined by $f_j \mapsto \mathfrak{G}_j^{-1} \otimes f_j$, for all $j \in J$, extended to the whole space $\bar{\mathfrak{f}}$ as an algebra morphism, by using $(\mathfrak{b}\mathfrak{b}')_{[-1]} \otimes (\mathfrak{b}\mathfrak{b}')_{[0]} = X^1(x^1 Y^1 \cdot \mathfrak{b})_{[-1]} x^2 (Y^2 \cdot \mathfrak{b}')_{[-1]} Y^3 \otimes (X^2 \cdot (x^1 Y^1 \cdot \mathfrak{b})_{[0]})(X^3 x^3 \cdot (Y^2 \cdot \mathfrak{b}')_{[0]})$;
- the multiplication of $\bar{\mathfrak{f}}$ is given by the multiplication \mathfrak{f} as follows: $\bar{v}\bar{v}' = \bar{\chi}_v^{-1}(S(\mathfrak{G}_v)f^1)\bar{\chi}_{v'}^{-1}(f^2)vv'$, for all v and v' , where \bar{v} is v viewed in $\bar{\mathfrak{f}}$ instead of \mathfrak{f} and similar for v' ;

We denote by $\mathcal{A}_H(\mathfrak{e}, \mathfrak{f})$ the space $\mathfrak{e} \otimes \mathfrak{f}$ endowed with the tensor product algebra and coalgebra structure of \mathfrak{e} and $\bar{\mathfrak{f}}$ in ${}^H\mathcal{YD}$. As we assumed that the compatibility relation holds, $\mathcal{A}_H(\mathfrak{e}, \mathfrak{f})$ is a braided Hopf algebra in ${}^H\mathcal{YD}$. The associated biproduct quasi-Hopf algebra $\mathcal{A}_H(\mathfrak{e}, \mathfrak{f}) \times H$ has the following structure:

Algebra structure

A an algebra is generated by the elements $(E_i)_{i \in I}$, $(\bar{F}_j)_{j \in J}$ and H subject to the relations $hE_i = \chi_i(h_1)E_ih_2$, $h\bar{F}_j = \bar{\chi}_j^{-1}(h_1)\bar{F}_jh_2$ and $\bar{F}_jE_i = \bar{\chi}_j^{-1}(X^2x^1)\chi_i(X^1x^2\mathfrak{G}_j^{-1})E_i\bar{F}_jX^3x^3$, for all $(i, j) \in I \times J$ and $h \in H$.

Comultiplication and counit

$$\begin{aligned}\Delta(E_i) &= \chi_i(x^1)E_i x^2 \otimes x^3 + \chi_i(X^2 x^1)X^1 \mathfrak{K}_i x^2 \otimes E_i X^3 x^3, \\ \Delta(\bar{F}_j) &= \bar{\chi}_j^{-1}(x^1)F_j x^2 \otimes x^3 + \bar{\chi}_j^{-1}(X^2 x^1)Y^1 \mathfrak{G}_j^{-1} x^2 \otimes F_j X^3 x^3, \\ \varepsilon(E_i) &= 0, \varepsilon(\bar{F}_j) = 0,\end{aligned}$$

for all $(i, j) \in I \times J$, and on H they reduce to the comultiplication and the counit of H ;

Antipode

$$\begin{aligned}\underline{S}(E_i) &= -\chi_i(X^1 p_2^1)S(X^1 p_1^1 \mathfrak{K}_i) \alpha E_i X^3 p^2, \\ \underline{S}(\bar{F}_j) &= -\bar{\chi}_j^{-1}(X^2 p_2^1)S(X^1 p_1^1 \mathfrak{G}_j^{-1}) \alpha \bar{F}_j X^3 p^2.\end{aligned}$$

Serre's relations

Let (H, R) be a QT quasi-Hopf algebra and q a non-zero scalar.

Denote by $\mathfrak{I}_{\mathfrak{e}}$ (resp. $\mathfrak{I}_{\mathfrak{f}}$) the ideal of \mathfrak{e} (resp. \mathfrak{f}) generated by

$$\begin{aligned} & \{e_i e_j - e_j e_i \mid i \neq j \text{ s.t. } \chi_i(R^1) \chi_j(R^2) = \chi_j(R^1) \chi_i(R^2) = 1\} \\ & \cup \{e_i(e_i e_j) - [2]e_i(e_j e_i) + \chi_i(x^1 x^3) \chi_j(x^2) e_j e_i^2 \mid i \neq j \text{ s.t.} \\ & \quad \chi_i(R^1 R^2) = q^2, \chi_i(R^1) \chi_j(R^2) = \chi_j(R^1) \chi_i(R^2) = q^{-1}\} \\ & (\{f_i f_j - f_j f_i \mid i \neq j \text{ s.t. } \bar{\chi}_i(\bar{R}^1) \bar{\chi}_j(\bar{R}^2) = \bar{\chi}_j(\bar{R}^1) \bar{\chi}_i(\bar{R}^2) = 1\} \\ & \cup \{\bar{\chi}_i(x^1 x^3) \bar{\chi}_j(x^2) f_i(f_i f_j) - [2](f_i f_j) f_i + (f_j f_i) f_i \mid i \neq j \text{ s.t.} \\ & \quad \chi_i(\bar{R}^1 \bar{R}^2) = q^2, \bar{\chi}_i(\bar{R}^1) \bar{\chi}_j(\bar{R}^2) = \bar{\chi}_j(\bar{R}^1) \bar{\chi}_i(\bar{R}^2) = q^{-1}\}), \end{aligned}$$

where $[2] = q + q^{-1}$.

- Then $\mathfrak{I}_{\mathfrak{e}}$ (resp. $\mathfrak{I}_{\mathfrak{f}}$) is a braided Hopf ideal in \mathfrak{e} (resp. \mathfrak{f}), and we can consider the quotient braided Hopf algebra $\mathfrak{e}' = \frac{\mathfrak{e}}{\mathfrak{I}_{\mathfrak{e}}}$ (resp. $\mathfrak{f}' = \frac{\mathfrak{f}}{\mathfrak{I}_{\mathfrak{f}}}$).
- When we perform the double biproduct quasi-Hopf algebra $\mathfrak{e}' \times H \times \mathfrak{f}'$ we have for it a similar description as for $\mathfrak{e} \times H \times \mathfrak{f}$, with mention that the relations among the algebra generators are enriched with the two sets of Serre relations described above.

2-cocycle deformation

Let A (for us \mathfrak{e}') be a Hopf algebra in ${}^H\mathcal{YD}$ and B (for us \mathfrak{f}') a Hopf algebra in \mathcal{YD}_H^H . Two cocycles for $A \times H \times B$ are produced by linear maps $\sigma : B \otimes A \rightarrow k$ satisfying the usual unital conditions and

$$\sigma(b \cdot h \otimes a) = \sigma(b \otimes h \cdot a), \quad (16)$$

$$\sigma(b \otimes aa') = \sigma(b\underline{1} \otimes a)\sigma(b\underline{2} \otimes a'), \quad (17)$$

$$\sigma(bb' \otimes a) = \sigma(b \otimes b'_{(1)} \cdot a\underline{2})\sigma(b'_{(0)} \otimes a\underline{1}), \quad (18)$$

for all $h \in H$, $a, a' \in A$ and $b, b' \in B$. More exactly,

$\widehat{\sigma} : (A \times H \times B) \otimes_H (A \times H \times B) \rightarrow k$ defined by

$\widehat{\sigma}(a \times h \times b \otimes_H a' \times h' \times b') = \varepsilon_A(a)\sigma(a \otimes h \cdot b)\varepsilon(h')\varepsilon_B(b')$ is a 2-cocycle for $A \times H \times B$.

- For us, σ as above are defined by

$$\sigma(f_j \otimes e_i) = \delta_{\chi_i, \bar{\chi}_j} \varpi_{i,j},$$

- $(A \times B \times H \times B)^{\widehat{\sigma}}$ has the same quasi-coalgebra structure as $A \times H \times B$, but the algebra structure changes as follows
($i \in I, j \in J, h \in H$):

$$hE_i = \chi_i(h_1)E_ih_2 \tag{19}$$

$$hF_j = \bar{\chi}_j(h_2)h_1F_j, \tag{20}$$

$$[F_j, E_i] = (\chi_i(\bar{R}^2)\bar{R}^1 - \chi_i(R^1)R^2)\delta_{\chi_i, \bar{\chi}_j} \varpi_{i,j}. \tag{21}$$

- The antipode changes accordingly.

Drinfeld-Jimbo quasi-quantum groups

- Let (I, \cdot) be a Cartan datum. Here $(\mathbb{Z}[I], +)$ is the free abelian group with basis $\{i, i \in I\}$. The elements of $\mathbb{Z}[I]$ are denoted by $\{K_\nu, \nu \in \mathbb{Z}[I]\}$; then $K_\mu K_\nu = K_{\mu+\nu}$, so K_0 is the neutral element of $\mathbb{Z}[I]$, and $K_\mu^{-1} = K_{-\mu}$, for all $\mu, \nu \in \mathbb{Z}[I]$.
- We assume I to be finite just to have an R -matrix for the Hopf algebra of functions associated to $\mathbb{Z}[I]$, $k^{\mathbb{Z}[I]}$. Actually, it is well-known that $R_I = \sum_{\mu, \nu \in \mathbb{Z}[I]} q^{\mu \cdot \nu} P_\mu \otimes P_\nu$ is an R -matrix for $k^{\mathbb{Z}[I]}$, where $(P_\mu)_{\mu \in \mathbb{Z}[I]}$ is the basis of $k^{\mathbb{Z}[I]}$ dual to the basis $(K_\mu)_{\mu \in \mathbb{Z}[I]}$ of $k[\mathbb{Z}[I]]$.
- We don't have non-trivial abelian 3-cocycles for the group $\mathbb{Z}[I]$, and therefore no quasitriangular structures in the quasi-Hopf sense for $k^{\mathbb{Z}[I]}$. Therefore, we have to tensorize $k^{\mathbb{Z}[I]}$ with a quasitriangular quasi-Hopf algebra (H, R) .

For (H, R) as above, set $\mathbb{H} = k^{\mathbb{Z}[I]} \otimes H$, a QT quasi-Hopf algebra with R -matrix \mathcal{R} given by

$$\mathcal{R} := R_I^1 \otimes R^1 \otimes R_I^2 \otimes R^2.$$

We take two families of characters $(\chi_i)_{i \in I} \in \hat{H} = \text{Alg}_k(H, k)$ and $(\bar{\chi}_i)_{i \in I} \in \hat{H}$

We extend them to two families of characters for \mathbb{H} , $(\chi'_i)_{i \in I}$ and $(\bar{\chi}'_i)_{i \in I}$, defined by

$$\chi'_i(P_\mu \otimes h) = \delta_{i,\mu} \chi_i(h),$$

and respectively by

$$\bar{\chi}'_i(P_\mu \otimes h) = \delta_{i,\mu} \bar{\chi}_i(h),$$

for all $\mu \in \mathbb{Z}[I]$ and $h \in H$.

- Consider \mathfrak{e} the quasi-free algebra on the set $(e_i)_{i \in I}$ and characters $(\chi'_i)_{i \in I}$. By Theorem 2.10, \mathfrak{e} is a braided Hopf algebra in $\mathcal{YD}_{\mathbb{H}}^{\mathbb{H}}$.
- Analogously, consider \mathfrak{f} the quasi-free algebra on the set $(f_i)_{i \in I}$ and characters $(\bar{\chi}'_i)_{i \in I}$; \mathfrak{f} is a braided Hopf algebra in $\mathcal{YD}_{\mathbb{H}}^{\mathbb{H}}$.
- Now, we consider the deformed double biproduct $DB_H(\mathfrak{e}', \mathfrak{f}')_{\hat{\sigma}} = (\mathfrak{e}' \times \mathbb{H} \times \mathfrak{f}')^{\hat{\sigma}}$, where

$$\sigma : \mathfrak{f}' \otimes \mathfrak{e}' \rightarrow k$$

is defined by $\sigma(f_j \otimes e_i) = \delta_{\chi_i, \bar{\chi}_j} \varpi_{i,j}$; here $\varpi_{i,j}$ is a given family of scalars.

As an associative algebra $DB_H(\mathfrak{e}', \mathfrak{f}')$ is unital generated by the elements $E_i, F_i, (P_\mu)_{\mu \in \mathbb{Z}[I]}$ and H , subject to the following relations:

$$P_\mu P_\nu = \delta_{\mu,\nu} P_\mu, \quad hE_i = \chi_i(h_1)E_i h_2, \quad F_i h = \bar{\chi}_i(h_2)h_1 F_i,$$

$$P_\mu h = h P_\mu, \quad P_\mu E_i = \delta_{i,\mu} E_i P_\mu, \quad F_j P_\mu = \delta_{i,\mu} P_\mu F_j,$$

$$\begin{aligned} & [F_j, E_i] = \\ &= \left(\sum_{\mu, \nu} q^{-\mu \cdot \nu} \chi'_i(P_\mu \otimes \bar{R}^2) P_\nu \bar{R}^1 - \sum_{\mu, \nu} q^{\mu \cdot \nu} \bar{\chi}'_i(P_\nu \otimes R^1) P_\mu R^2 \right) \delta_{\chi_i, \bar{\chi}_j} \varpi_{i,j} \\ &= \left(\sum_{\mu} q^{-i \cdot \mu} \chi_i(\bar{R}^2) P_\mu \bar{R}^1 - \sum_{\nu} q^{i \cdot \nu} \chi_i(R^1) P_\nu R^2 \right) \delta_{\chi_i, \bar{\chi}_j} \varpi_{i,j} \\ &= \left(\sum_{\mu} q^{-i \cdot \mu} P_\mu \mathfrak{G}_i - \sum_{\nu} q^{i \cdot \nu} P_\nu \mathfrak{K}_i \right) \delta_{\chi_i, \bar{\chi}_j} \varpi_{i,j}, \end{aligned}$$

for all $i, j \in I$

and the Serre's relations: i) $E_i E_j = E_j E_i$, for all $i \neq j$ such that

$$\begin{aligned}
 & \sum_{\mu, \nu} \chi'_i(q^{\mu \cdot \nu} P_\mu \otimes R^1) \chi'_j(P_\nu \otimes R^2) = \\
 & \sum_{\mu, \nu} \chi'_j(q^{\mu \cdot \nu} P_\mu \otimes R^1) \chi'_i(P_\nu \otimes R^2) = 1 \\
 \Leftrightarrow & q^{i \cdot j} \chi_i(R^1) \chi_j(R^2) = q^{i \cdot j} \chi_i(R^1) \chi_j(R^2) = 1 \\
 \Leftrightarrow & \chi_i(R^1) \chi_j(R^2) = \chi_j(R^1) \chi_i(R^2) = q^{-i \cdot j}.
 \end{aligned}$$

ii) $E_i E_i E_j - [2] E_i E_j E_i + \chi_i(x^1 x^3) \chi_j(x^2) E_j E_i^2 = 0$, for all $i \neq j$ such that

$$\begin{aligned} \sum_{\mu, \nu \in \mathbb{Z}[I]} q^{\mu \cdot \nu} \chi'_i((P_\mu \otimes R^1)(P_\nu \otimes R^2)) = q^2 &\Leftrightarrow q^{i \cdot i} \chi_i(R^1 R^2) = q^2 \\ &\Leftrightarrow \chi_i(R^1 R^2) = q^{2-i \cdot i} \end{aligned}$$

and

$$\begin{aligned} \sum_{\mu, \nu \in \mathbb{Z}[I]} q^{\mu \cdot \nu} \chi'_i(P_\mu \otimes R^1) \chi'_j(P_\nu \otimes R^2) &= \\ \sum_{\mu, \nu \in \mathbb{Z}[I]} q^{\mu \cdot \nu} \chi'_j(P_\mu \otimes R^1) \chi'_i(P_\nu \otimes R^2) &= q^{-1} \\ \Leftrightarrow \chi_i(R^1) \chi_j(R^2) &= \chi_j(R^1) \chi_i(R^2) = q^{-1-i \cdot j}. \end{aligned}$$

iii) the relations for the F_i 's, analogous with those in ii) for the E_i 's.

A concrete example: the cyclic group

Let $C_n = \langle K \rangle$ be the cyclic group of order n written multiplicatively, and k a field that contains a primitive n^2 root of unity, say ζ , such that $\zeta^{2n} = 1$. For $\gamma = \zeta^n$,

$$\Phi = \sum_{i,j,l=0}^{n-1} \gamma^{i[\frac{j+l}{n}]} 1_i \otimes 1_j \otimes 1_l.$$

is a normalized 3-cocycle that endows $k[C_n]$ with a quasi-Hopf algebra structure (denoted by $k_\Phi[C_n]$); here, for any $0 \leq j \leq n-1$,

$$1_j = \frac{1}{n} \sum_{i=0}^{n-1} \gamma^{(n-j)i} K^i$$

Furthermore, $(k_\Phi[C_n], R)$ is a quasitriangular quasi-Hopf algebra with $R = \sum_{u,v} \zeta^{uv} 1_u \otimes 1_v$.

Take $\chi_i(K) = \gamma^{m_i}$ and $\bar{\chi}_i(K) = \gamma^{n_i}$, where $m_i, n_i \in \mathbb{N}_{<n}$. Then $\mathfrak{K}_i = K^{m_i}$ and $\mathfrak{G}_i = K^{n_i}$ and for this datum one can consider the quasi-quantum group $(\mathfrak{e}' \times (k^{\mathbb{Z}[I]} \otimes k_{\Phi}[C_n]) \times \mathfrak{f}')^{\widehat{\sigma}}$.

Note that the Serre relations read in this case as

$$\text{since } \chi_i(R^1)\chi_j(R^2) = \chi_j(R^1)\chi_i(R^2) = \gamma^{m_i n_j} \Rightarrow \gamma^{m_i n_j} = q^{-i \cdot j};$$

$$\text{since } \chi_i(R^1 R^2) = \gamma^{m_i^2} \Rightarrow \gamma^{m_i^2} = q^{2-i \cdot i} \text{ and } \gamma^{m_i n_j} = q^{-1-i \cdot j}.$$

These can be reduced to $i \cdot j = 0$, and respectively to $i \cdot i = 2$ and $i \cdot j = -1$, provided that $n \mid m_i n_j$ and $n \mid m_i^2$ (we can always do this, by taking appropriate m_i 's and n_j 's!).

Symplectic fermion quasi-Hopf algebra

Let \mathbb{C} be the field of complex numbers, N a non-zero odd natural number and $q \in \mathbb{C}$ such that $q^2 = -i$. The family of symplectic fermion quasi-Hopf algebras, denoted in what follows by $\mathcal{O}_q(N)$, were introduced in ⁴. To have the simplest description for the Yetter-Drinfeld coalgebras derived from $\mathcal{O}_q(N)$, in what follows we will work with a slightly deformed version of $\mathcal{O}_q(N)$ (relative to the presentation of the $\mathcal{O}_q(N)$ given in ⁵).

As an algebra, $\mathcal{O}_q(N)$ is the \mathbb{C} -algebra generated by K and the families $\{f_j^\pm \mid 1 \leq j \leq N\}$, with relations, $1 \leq j, t \leq N$,

$$f_j^\pm K = -K f_j^\pm, \quad f_j^+ f_t^- + f_t^- f_j^+ = \delta_{j,t} e_1, \quad f_j^\pm f_t^\pm = -f_t^\pm f_j^\pm, \quad K^4 = 1; \quad (22)$$

here $e_1 := \frac{1}{2}(1 - K^2)$.

⁴V. Farsad, A. M. Gainutdinov, I. Runkel, Adv. Math. **400** (2022), 108–247.

⁵J. Berger, A. M. Gainutdinov, I. Runkel, J. Alg. **548** (2020), 96–119.

The comultiplication Δ and counit ε of $\mathcal{O}_q(N)$ are determined by

$$\Delta(K) = K \otimes K, \quad \varepsilon(K) = 1, \quad (23)$$

$$\Delta(f_j^\pm) = f_j^\pm \otimes 1 + \omega_\pm \otimes f_j^\pm, \quad \varepsilon(f_j^\pm) = 0, \quad \forall 1 \leq j \leq N, \quad (24)$$

extended to the whole $\mathcal{O}_q(N)$ as unital algebra morphisms;

$$\omega_\pm := (e_0 \pm ie_1)K, \quad e_0 := \frac{1}{2}(1 + K^2).$$

The reassociator Φ of $\mathcal{O}_q(N)$ and its inverse Φ^{-1} are given by

$$\Phi = 1 \otimes 1 \otimes 1 + e_1 \otimes e_1 \otimes (K - 1), \quad \Phi^{-1} = 1 \otimes 1 \otimes 1 + e_1 \otimes e_1 \otimes (K^3 - 1) \quad (25)$$

$$\text{where } \beta_\pm := e_0 + q^2(\pm i)^N e_1 K^N.$$

Note that our reassociator for $\mathcal{O}_q(N)$ differs from their reassociator.

Another different structure that we consider for $\mathcal{O}_q(N)$ is the triple that defines the antipode of the quasi-Hopf algebra $\mathcal{O}_q(N)$. In our definition, the antipode of $\mathcal{O}_q(N)$ is determined by

$$S(K) = K^{(-1)} = (e_0 - e_1)K, \quad S(f_j^\pm) = f_j^\pm (e_0 \pm ie_1)K, \quad \alpha = \beta_+, \quad \beta = 1, \quad (26)$$

with S extended to the whole $\mathcal{O}_q(N)$ as an anti-morphism of algebras.

Consider the classical reassociator for $k[C_4]$ given by

$$\Phi_2 = \sum_{a,b,c=0}^3 (-1)^{a[\frac{b+c}{4}]} 1_a \otimes 1_b \otimes 1_c.$$

There is a twist F such that $(\Phi_2)_F = \Phi$. As for $k_{\Phi_2}[C_4]$ we have a natural QT-structure given by $R_2 = \sum_{u,v} i^{uv} 1_u \otimes 1_v$, we get for free an R -matrix R , $R = (R_2)_F$, for $k\langle K \rangle$, provided that $q^2 = -i$. In the basis given by the powers of K ,

$$R = \frac{1}{8} \begin{pmatrix} 3+q & 2-(1+q)i & 1-q & 2+(1+q)i \\ 2+(1+q)i & -(1+q) & (1-q)i & -1-2i+q \\ 1-q & -(1-q)i & -(1-q) & (1-2)i \\ 2-(1-q)i & -1+2i+q & -(1-q)i & -(1+q) \end{pmatrix}.$$

We don't have $\mathcal{O}_q(N) = (\mathfrak{e}' \times k\langle K \rangle \times \mathfrak{f}')^{\widehat{\sigma}}$, but one can show that $\mathcal{O}_q(N) = ((\mathfrak{e} \widetilde{\otimes} \bar{\mathfrak{f}}) \times k\langle K \rangle)_{\Sigma}$. Actually, we computed the quasi-Hopf algebra structure of $(\mathfrak{e} \times k\langle K \rangle \times \mathfrak{f})^{\widehat{\sigma}}$ and transported to $((\mathfrak{e} \widetilde{\otimes} \bar{\mathfrak{f}}) \times k\langle K \rangle)_{\Sigma}$ through the natural isomorphism $((\mathfrak{e} \widetilde{\otimes} \bar{\mathfrak{f}}) \times k\langle K \rangle)_{\Sigma} \simeq (\mathfrak{e} \times k\langle K \rangle \times \mathfrak{f})^{\widehat{\sigma}}$, and so we landed at the infinite dimensional version of $\mathcal{O}_q(N)$: we don't get the relations $f_j^{\pm} f_t^{\pm} = -f_t^{\pm} f_j^{\pm}$; one can add them by factorizing with the ideal generated by them, a quasi-Hopf ideal actually.

We can also consider the Serre relations for the infinite dimensional version of $\mathcal{O}_q(N)$, by following the same idea as in the cyclic case presented above (by taking $m_i = n_j = 2$, for all $i, j \in I$). Of course, \mathfrak{e} is the set of f_i^- 's and \mathfrak{f} is the set of f_i^+ 's

THANK YOU!!!