

On the classification of finite GK-dimensional Nichols algebras of twisted Yetter-Drinfeld modules over finite abelian groups

Yuping Yang
Southwest University

Conference of Hopf Algebras and Tensor Categories
January 22, 2026

outline

- 1 Background and definitions
- 2 Minimal nondiagonal objects
- 3 Graded pre-Nichols algebras
- 4 The main results

Background

\Bbbk : a fixed algebraically closed field of characteristic zero. All the algebras and modules mentioned in this talk are over \Bbbk .

Background

\Bbbk : a fixed algebraically closed field of characteristic zero. All the algebras and modules mentioned in this talk are over \Bbbk .

Let H be a pointed Hopf algebra (or a pointed coquasi-Hopf algebra), and G the group of its group-like elements. Let $\text{gr}(H)$ be the coradically graded version of H . Then

$$\text{gr}(H) = R \# \Bbbk G.$$

Background

\Bbbk : a fixed algebraically closed field of characteristic zero. All the algebras and modules mentioned in this talk are over \Bbbk .

Let H be a pointed Hopf algebra (or a pointed coquasi-Hopf algebra), and G the group of its group-like elements. Let $\text{gr}(H)$ be the coradically graded version of H . Then

$$\text{gr}(H) = R \# \Bbbk G.$$

- Andruskiewitsch and Schneider conjectured that R is a Nichols algebra whenever $\dim(H) < \infty$. This has been proved true when G is a finite abelian group, or when the order of G is odd.

Background

\Bbbk : a fixed algebraically closed field of characteristic zero. All the algebras and modules mentioned in this talk are over \Bbbk .

Let H be a pointed Hopf algebra (or a pointed coquasi-Hopf algebra), and G the group of its group-like elements. Let $\text{gr}(H)$ be the coradically graded version of H . Then

$$\text{gr}(H) = R \# \Bbbk G.$$

- Andruskiewitsch and Schneider conjectured that R is a Nichols algebra whenever $\dim(H) < \infty$. This has been proved true when G is a finite abelian group, or when the order of G is odd.
- When H is infinite dimensional, R is generally not a Nichols algebra. Instead, it is a post-Nichols algebra, and its dual (when it exists) is a pre-Nichols algebra.

Pre-Nichols algebra and Nichols algebra

Definition

Let V be a braided vector space and let $T(V) = \bigoplus_{i \geq 0} V^{\otimes i}$ be the tensor algebra (an N -graded braided Hopf algebra by declaring that every nonzero element in V is primitive).

- (1) A **pre-Nichols algebra** $P(V)$ of V is a quotient $T(V)/I$, where I is an N -graded Hopf ideal contained in $\bigoplus_{i \geq 2} V^{\otimes i}$.
- (2) The **Nichols algebra** $B(V)$ of V is the quotient $T(V)/I(V)$, where $I(V)$ is the maximal N -graded Hopf ideal contained in $\bigoplus_{i \geq 2} V^{\otimes i}$.

Pre-Nichols algebra and Nichols algebra

Definition

Let V be a braided vector space and let $T(V) = \bigoplus_{i \geq 0} V^{\otimes i}$ be the tensor algebra (an N -graded braided Hopf algebra by declaring that every nonzero element in V is primitive).

- (1) A **pre-Nichols algebra** $P(V)$ of V is a quotient $T(V)/I$, where I is an N -graded Hopf ideal contained in $\bigoplus_{i \geq 2} V^{\otimes i}$.
- (2) The **Nichols algebra** $B(V)$ of V is the quotient $T(V)/I(V)$, where $I(V)$ is the maximal N -graded Hopf ideal contained in $\bigoplus_{i \geq 2} V^{\otimes i}$.

For each braided vector space V , there are canonical surjective morphisms of braided Hopf algebras:

$$T(V) \twoheadrightarrow P(V) \twoheadrightarrow B(V).$$

Nichols algebras of diagonal type

Definition

A braided vector space V is called of diagonal type if it has a basis $\{X_1, X_2, \dots, X_n\}$ such that the braiding is determined by

$$\mathcal{R}(X_i \otimes X_j) = q_{ij} X_j \otimes X_i, \quad q_{ij} \in \mathbb{k}^*, \forall 1 \leq i \leq j \leq n.$$

If V is diagonal type, its Nichols algebra $B(V)$ and pre-Nichols algebras $P(V)$ are also called of diagonal type.

Nichols algebras of diagonal type

Definition

A braided vector space V is called of diagonal type if it has a basis $\{X_1, X_2, \dots, X_n\}$ such that the braiding is determined by

$$\mathcal{R}(X_i \otimes X_j) = q_{ij} X_j \otimes X_i, \quad q_{ij} \in \mathbb{k}^*, \forall 1 \leq i \leq j \leq n.$$

If V is diagonal type, its Nichols algebra $B(V)$ and pre-Nichols algebras $P(V)$ are also called of diagonal type.

- Around 2006, Heckenberger developed the theory of Weyl groupoids and arithmetical root systems for Nichols algebras of diagonal type. He then obtained a complete classification of arithmetic root systems.

Nichols algebras of diagonal type

Definition

A braided vector space V is called of diagonal type if it has a basis $\{X_1, X_2, \dots, X_n\}$ such that the braiding is determined by

$$\mathcal{R}(X_i \otimes X_j) = q_{ij} X_j \otimes X_i, \quad q_{ij} \in \mathbb{k}^*, \forall 1 \leq i \leq j \leq n.$$

If V is diagonal type, its Nichols algebra $B(V)$ and pre-Nichols algebras $P(V)$ are also called of diagonal type.

- Around 2006, Heckenberger developed the theory of Weyl groupoids and arithmetical root systems for Nichols algebras of diagonal type. He then obtained a complete classification of arithmetic root systems.
- Recently, Angiono and García Iglesias proved that a Nichols algebra of diagonal type has finite GK-dimension if and only if its root system is finite, or equivalently, if it is an arithmetic root system.

Twisted Yetter-Drinfeld modules category

Definition

Let G be a finite abelian group and Φ a 3-cocycle on G . A **Yetter-Drinfeld module** V over $(\mathbb{k}G, \Phi)$ is a G -graded vector space $V = \bigoplus_{g \in G} V_g$ such that each V_g is a projective G -representation with respect to Φ_g , that is

$$e \triangleright (f \triangleright v) = \Phi_g(e, f)(ef) \triangleright v \quad \forall e, f \in G, \quad v \in V_g.$$

Here Φ_g is the 2-cocycle on G defined by $\Phi_g(x, y) = \frac{\Phi(g, x, y)\Phi(x, y, g)}{\Phi(x, g, y)}, \quad \forall x, y \in G.$

Twisted Yetter-Drinfeld modules category

Definition

Let G be a finite abelian group and Φ a 3-cocycle on G . A **Yetter-Drinfeld module** V over $(\mathbb{k}G, \Phi)$ is a G -graded vector space $V = \bigoplus_{g \in G} V_g$ such that each V_g is a projective G -representation with respect to Φ_g , that is

$$e \triangleright (f \triangleright v) = \Phi_g(e, f)(ef) \triangleright v \quad \forall e, f \in G, \quad v \in V_g.$$

Here Φ_g is the 2-cocycle on G defined by $\Phi_g(x, y) = \frac{\Phi(g, x, y)\Phi(x, y, g)}{\Phi(x, g, y)}, \quad \forall x, y \in G$.

- $\mathbb{k}G\mathcal{YD}^\Phi$: the category of Yetter-Drinfeld modules over $(\mathbb{k}G, \Phi)$. Each object in it is called a twisted Yetter-Drinfeld module of G .

Twisted Yetter-Drinfeld modules category

Definition

Let G be a finite abelian group and Φ a 3-cocycle on G . A **Yetter-Drinfeld module** V over $(\mathbb{k}G, \Phi)$ is a G -graded vector space $V = \bigoplus_{g \in G} V_g$ such that each V_g is a projective G -representation with respect to Φ_g , that is

$$e \triangleright (f \triangleright v) = \Phi_g(e, f)(ef) \triangleright v \quad \forall e, f \in G, \quad v \in V_g.$$

Here Φ_g is the 2-cocycle on G defined by $\Phi_g(x, y) = \frac{\Phi(g, x, y)\Phi(x, y, g)}{\Phi(x, g, y)}, \quad \forall x, y \in G$.

- ${}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$: the category of Yetter-Drinfeld modules over $(\mathbb{k}G, \Phi)$. Each object in it is called a twisted Yetter-Drinfeld module of G .
- **Braiding**: Let $V = \bigoplus_{g \in G} V_g \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$, the braiding \mathcal{R} of V is determined by $\mathcal{R}(X \otimes Y) = e \triangleright Y \otimes X, \quad X \in V_e, Y \in V_f$.

Classification problem

Problem (The main problem)

Classify all finite GKdimensional pre-Nichols algebras of objects in ${}_{\mathbb{k}G}^G\mathcal{YD}^{\Phi}$.
It is crucial for the classification of pointed coquasi-Hopf algebras of finite GKdimension.

Classification problem

Problem (The main problem)

Classify all finite GKdimensional pre-Nichols algebras of objects in ${}_{\mathbb{k}G}^G\mathcal{YD}^{\Phi}$.
It is crucial for the classification of pointed coquasi-Hopf algebras of finite GKdimension.

Problem (A prerequisite step)

Classify finite GK-dimensional Nichols algebras of objects in ${}_{\mathbb{k}G}^G\mathcal{YD}^{\Phi}$.

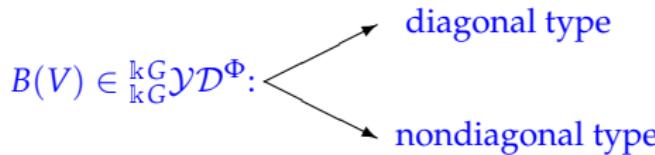
Classification problem

Problem (The main problem)

Classify all finite GKdimensional pre-Nichols algebras of objects in ${}_{\mathbb{k}G}^G\mathcal{YD}^{\Phi}$.
It is crucial for the classification of pointed coquasi-Hopf algebras of finite GKdimension.

Problem (A prerequisite step)

Classify finite GK-dimensional Nichols algebras of objects in ${}_{\mathbb{k}G}^G\mathcal{YD}^{\Phi}$.



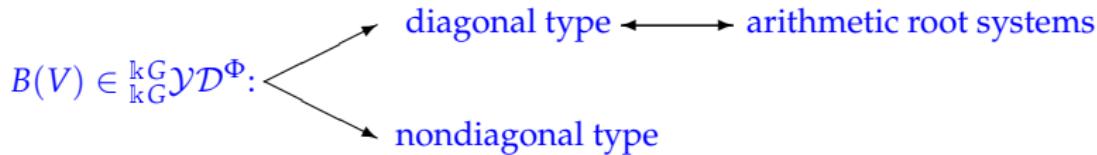
Classification problem

Problem (The main problem)

Classify all finite GKdimensional pre-Nichols algebras of objects in ${}_{\mathbb{K}G}^{\mathbb{K}G}\mathcal{YD}^{\Phi}$. It is crucial for the classification of pointed coquasi-Hopf algebras of finite GKdimension.

Problem (A prerequisite step)

Classify finite GK-dimensional Nichols algebras of objects in ${}_{\mathbb{K}_G^G}^G\mathcal{YD}^\Phi$.



Minimal nondiagonal object

To study Nichols algebras of nondiagonal type, we start with the simplest case.

Definition

An object $V \in \frac{\mathbb{k}G}{\mathbb{k}G} \mathcal{YD}^\Phi$ is called a **minimal nondiagonal object** if V is nondiagonal and every nonzero proper subobject of V is diagonal.

Minimal nondiagonal object

To study Nichols algebras of nondiagonal type, we start with the simplest case.

Definition

An object $V \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ is called a **minimal nondiagonal object** if V is nondiagonal and every nonzero proper subobject of V is diagonal.

A basic fact: If $V \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ is nondiagonal, then there exists a minimal nondiagonal object $U \subset V$.

Minimal nondiagonal object

To study Nichols algebras of nondiagonal type, we start with the simplest case.

Definition

An object $V \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ is called a **minimal nondiagonal object** if V is nondiagonal and every nonzero proper subobject of V is diagonal.

A basic fact: If $V \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ is nondiagonal, then there exists a minimal nondiagonal object $U \subset V$.

Proposition

A minimal nondiagonal object in ${}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ is rank 3, that is, it is a direct sum of 3 simple objects.

Structure of Minimal nondiagonal object

Proposition

Let $V = V_{g_1} \oplus V_{g_2} \oplus V_{g_3} \in {}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^{\Phi}$ be a minimal nondiagonal object such that $G = G_V = \langle g_1, g_2, g_3 \rangle$. Then we have

- (1) $\dim(V_{g_1}) = \dim(V_{g_2}) = \dim(V_{g_3}) = n$, where $n = |\frac{\Phi_{g_1}(g_2, g_3)}{\Phi_{g_1}(g_3, g_2)}|$.
- (2) for each $i \in \{1, 2, 3\}$, V_{g_i} has a basis $\{X_1, X_2, \dots, X_n\}$ such that

$$g_i \triangleright X_l = \alpha_i X_l, \quad 1 \leq l \leq n;$$

$$g_j \triangleright X_l = \beta_i \left(\frac{\Phi_{g_i}(g_j, g_k)}{\Phi_{g_i}(g_k, g_j)} \right)^{l-1} X_l, \quad 1 \leq l \leq n;$$

$$g_k \triangleright X_l = X_{l+1}, \quad g_k \triangleright X_n = \gamma_i X_1, \quad 1 \leq l \leq n-1.$$

Here $j \neq k \in \{1, 2, 3\} \setminus \{i\}$, and $\alpha_i, \beta_i, \gamma_i \in \mathbb{k}^*$ satisfy certain conditions.

Nichols algebras of simple objects

Since each minimal nondiagonal object is a direct sum of 3 simple objects, we first consider Nichols algebras of simple objects.

Nichols algebras of simple objects

Since each minimal nondiagonal object is a direct sum of 3 simple objects, we first consider Nichols algebras of simple objects.

Theorem

Let $V \in {}_{k_G^G} \mathcal{YD}^\Phi$ be a simple twisted Yetter-Drinfeld module with $\dim(V) \geq 2$, and the G -degree of V is g . Then $B(V)$ is finite GK-dimensional if and only if V is one of the following types:

- (T1) $g \triangleright v = v$ for all $v \in V$.
- (T2) $g \triangleright v = -v$ for all $v \in V$.
- (T3) $g \triangleright v = \zeta_3 v$ for all $v \in V$ and $\dim(V) = 2$, where ζ_3 is a 3-rd primitive root of unity.

Nichols algebras of minimal nondiagonal module: first result

Remark

Let $V \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ be a minimal nondiagonal object such that $G = G_V$. Then V is a direct sum of 3 simple objects of the same dimension. So $\dim(V) = 3n$ with $n \geq 2$. ($n=1$ implies that V is diagonal type).

Nichols algebras of minimal nondiagonal module: first result

Remark

Let $V \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ be a minimal nondiagonal object such that $G = G_V$. Then V is a direct sum of 3 simple objects of the same dimension. So $\dim(V) = 3n$ with $n \geq 2$. ($n=1$ implies that V is diagonal type).

Proposition

Let $V \in {}_{\mathbb{k}G}^{\mathbb{k}G}\mathcal{YD}^{\Phi}$ be a minimal nondiagonal object such that $G = G_V$. If $\dim(V) \geq 9$, then $\text{GKdim}(B(V)) = \infty$.

Nichols algebras of minimal nondiagonal module: first result

Remark

Let $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ be a minimal nondiagonal object such that $G = G_V$. Then V is a direct sum of 3 simple objects of the same dimension. So $\dim(V) = 3n$ with $n \geq 2$. ($n=1$ implies that V is diagonal type).

Proposition

Let $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ be a minimal nondiagonal object such that $G = G_V$. If $\dim(V) \geq 9$, then $\text{GKdim}(B(V)) = \infty$.

A sketched proof:

- (1) Let $V = V_1 \oplus V_2 \oplus V_3$ be a direct sum of simple objects, and V_1, V_2, V_3 are of types T1-T2 (type T3 implies the dimension of simple object must be 2). Then $B(V_1 \oplus V_2), B(V_1 \oplus V_3), B(V_2 \oplus V_3)$ are all of diagonal type.

Nichols algebras of minimal nondiagonal module: first result

Remark

Let $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ be a minimal nondiagonal object such that $G = G_V$. Then V is a direct sum of 3 simple objects of the same dimension. So $\dim(V) = 3n$ with $n \geq 2$. ($n=1$ implies that V is diagonal type).

Proposition

Let $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ be a minimal nondiagonal object such that $G = G_V$. If $\dim(V) \geq 9$, then $\text{GKdim}(B(V)) = \infty$.

A sketched proof:

- (1) Let $V = V_1 \oplus V_2 \oplus V_3$ be a direct sum of simple objects, and V_1, V_2, V_3 are of types T1-T2 (type T3 implies the dimension of simple object must be 2). Then $B(V_1 \oplus V_2), B(V_1 \oplus V_3), B(V_2 \oplus V_3)$ are all of diagonal type.
- (2) By arithmetic root systems, we can prove that at least one of the three Nichols algebras is infinite GK-dimensional. So $\text{GKdim}(B(V))$ is infinite.

One unresolved case

If $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ is a minimal nondiagonal object with $\dim(V) = 6$. We can prove $\text{GKdim}(B(V)) = \infty$ by a similar method except the one case:

Example

Let $V = V_1 \oplus V_2 \oplus V_3 \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ be a minimal nondiagonal object with $G = G_V$ such that:

- (1) $\dim(V) = 6$, or equivalently $\dim(V_1) = \dim(V_2) = \dim(V_3) = 2$;
- (2) V_1, V_2, V_3 are all of type (T2).

By arithmetic root systems, we can show that $B(V_1 \oplus V_2)$, $B(V_1 \oplus V_3)$ and $B(V_2 \oplus V_3)$ are possible all finite GKdimensional.

Definition

Definition

Let $P(V)$ be a pre-Nichols algebra of rank n , i.e., $V = \bigoplus_{1 \leq i \leq n} V_i \in {}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^n$ is a direct sum of n simple objects. Let $\{e_1, e_2, \dots, e_n\}$ be a set of free generators of \mathbb{Z}^n . A pre-Nichols algebra $P(V)$ is called graded if it is a \mathbb{Z}^n -graded braided Hopf algebra such that $\deg(V_i) = e_i$ for $1 \leq i \leq n$.

Definition

Definition

Let $P(V)$ be a pre-Nichols algebra of rank n , i.e., $V = \bigoplus_{1 \leq i \leq n} V_i \in {}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^n$ is a direct sum of n simple objects. Let $\{e_1, e_2, \dots, e_n\}$ be a set of free generators of \mathbb{Z}^n . A pre-Nichols algebra $P(V)$ is called graded if it is a \mathbb{Z}^n -graded braided Hopf algebra such that $\deg(V_i) = e_i$ for $1 \leq i \leq n$.

Fact

Every Nichols algebra in ${}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^\Phi$ is graded.

Definition

Definition

Let $P(V)$ be a pre-Nichols algebra of rank n , i.e., $V = \bigoplus_{1 \leq i \leq n} V_i \in {}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^n$ is a direct sum of n simple objects. Let $\{e_1, e_2, \dots, e_n\}$ be a set of free generators of \mathbb{Z}^n . A pre-Nichols algebra $P(V)$ is called graded if it is a \mathbb{Z}^n -graded braided Hopf algebra such that $\deg(V_i) = e_i$ for $1 \leq i \leq n$.

Fact

Every Nichols algebra in ${}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^\Phi$ is graded.

Notation: Let $P(V)$ be a graded pre-Nichols algebra of rank n , and let $S \subset \mathcal{P}(V)$ be a homogenous subobject. Then we denote $D(S)$ the set of \mathbb{Z}^n -degrees of nonzero homogenous elements in S .

A key observation

Proposition

Let $P(V)$ be a graded pre-Nichols algebra in $\mathbb{k}_G^G \mathcal{YD}^\Phi$ with counit ϵ , and let A be a homogenous subalgebra of $P(V)$. If there are homogenous subobjects $S, T \subset \ker \epsilon$ such that:

- (a) $\Delta(A) \subset A \otimes A + S \otimes T$,
- (b) $D(A) \cap D(S)$ and $D(A) \cap D(T)$ are empty sets,
- (c) $S^2 \subset S, T^2 \subset T, ASA \subset S, ATA \subset T$,

then A is a braided bialgebra with a new coproduct $\tilde{\Delta} = \pi \circ \Delta$, where

$$\pi : A \otimes A + S \otimes T \rightarrow A \otimes A$$

is the canonical projection.

A useful corollary

Corollary

Let $V = V_1 \oplus \cdots \oplus V_n \in {}_{kG}^k \mathcal{YD}^\Phi$ be a direct sum of simple objects with $n \geq 3$, and $\mathcal{P}(V)$ a graded pre-Nichols algebra. Let

$$W = \text{ad}_{V_i}(\text{ad}_{V_j}(V_k)) + \text{ad}_{V_j}(\text{ad}_{V_i}(V_k)) \subset \mathcal{P}(V)$$

with $i \neq j \neq k \in \{1, 2, \dots, n\}$, and let $A(W)$ be the subalgebra of $\mathcal{P}(V)$ generated by W . If W is nonzero, then $A(W)$ is a pre-Nichols algebra of W (with a new coproduct $\tilde{\Delta}$), and thus $B(W)$ is a subquotient of $P(V)$.

Proof: $A(W)$ satisfies all the conditions of previous proposition, and each nonzero element in W is primitive under new coproduct $\tilde{\Delta}$.

Back to the unresolved case

Proposition

Let $V = V_1 \oplus V_2 \oplus V_3 \in {}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^\Phi$ be a minimal nondiagonal object and $G = G_V$ such that:

- (a) $\dim(V) = 6$;
- (b) V_1, V_2, V_3 are all of type (T2).

Then $\text{GKdim}(B(V)) = \infty$.

Back to the unresolved case

Proposition

Let $V = V_1 \oplus V_2 \oplus V_3 \in {}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^{\Phi}$ be a minimal nondiagonal object and $G = G_V$ such that:

- (a) $\dim(V) = 6$;
- (b) V_1, V_2, V_3 are all of type (T2).

Then $\text{GKdim}(B(V)) = \infty$.

Proof:

(1) Let $W = \text{ad}_{V_1}(\text{ad}_{V_2}(V_3)) + \text{ad}_{V_2}(\text{ad}_{V_1}(V_3))$. Then it is nonzero and is of diagonal. Using arithmetic root system we can prove

$$\text{GKdim}(B(W)) = \infty.$$

Back to the unresolved case

Proposition

Let $V = V_1 \oplus V_2 \oplus V_3 \in {}_{\mathbb{k}G}^{\mathbb{k}G} \mathcal{YD}^{\Phi}$ be a minimal nondiagonal object and $G = G_V$ such that:

- (a) $\dim(V) = 6$;
- (b) V_1, V_2, V_3 are all of type (T2).

Then $\text{GKdim}(B(V)) = \infty$.

Proof:

(1) Let $W = \text{ad}_{V_1}(\text{ad}_{V_2}(V_3)) + \text{ad}_{V_2}(\text{ad}_{V_1}(V_3))$. Then it is nonzero and is of diagonal. Using arithmetic root system we can prove

$$\text{GKdim}(B(W)) = \infty.$$

(2) Since $B(W)$ is a subquotient of $B(V)$, thus

$$\text{GKdim}(B(V)) \geq \text{GKdim}(B(W)) = \infty.$$

The main result

Theorem

Suppose $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ is nondiagonal, then $\text{GKdim}(B(V)) = \infty$.

Proof: Let U be a minimal nondiagonal object inside V . Then $\text{GKdim}(B(U)) = \infty$, and thus $\text{GKdim}(B(V)) = \infty$.

The main result

Theorem

Suppose $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ is nondiagonal, then $\text{GKdim}(B(V)) = \infty$.

Proof: Let U be a minimal nondiagonal object inside V . Then $\text{GKdim}(B(U)) = \infty$, and thus $\text{GKdim}(B(V)) = \infty$.

Corollary

Let $V \in \frac{\mathbb{k}G}{\mathbb{k}G}\mathcal{YD}^\Phi$ be a nondiagonal object and let $P(V)$ be a pre-Nichols algebra of V . Then $\text{GKdim}(P(V)) = \infty$

Proof: there is a surjective homomorphism: $P(V) \twoheadrightarrow B(V)$.

The main result

A summary of finite GKdimensional Nichols algebras in $\mathbb{k}G\mathcal{YD}^\Phi$:

$B(V)$: diagonal type with finite GKdim \longleftrightarrow arithmetic root systems

$B(V)$: nondiagonal type \longrightarrow infinite GKdimensional

The main result

A summary of finite GKdimensional Nichols algebras in $\mathbb{k}^G \mathcal{YD}^\Phi$:

$B(V)$: diagonal type with finite GKdim \longleftrightarrow arithmetic root systems

$B(V)$: nondiagonal type \longrightarrow infinite GKdimensional

Theorem

Let $V \in \mathbb{k}^G \mathcal{YD}^\Phi$ be a finite dimensional object. Then $\text{GKdim}(B(V)) < \infty$ if and only if $B(V)$ is diagonal type and its root system is finite.

Thank You!