

Frobenius-Schur indicators from invariants of 3-manifolds

Siu-Hung Ng

Louisiana State University

International Conference of Hopf Algebras and Tensor
Categories
TSIMF, Jan 19-23, 2026

Joint work with L. Chang and Y. Wang.

Frobenius-Schur indicators for finite groups

- Let G be a finite group. Consider the group algebra $\mathbb{C}G$.
- For any $\mathbb{C}G$ -module V or $V \in \text{Rep}(G)$, χ_V denotes the character of G afforded by V .
- The n -th Frobenius-Schur indicator $\nu_n(V)$ of V is the scalar:

$$\nu_n(V) = \frac{1}{|G|} \sum_{g \in G} \chi_V(g^n) = \chi_V \left(\frac{1}{|G|} \sum_{g \in G} g^n \right).$$

Counting with Frobenius-Schur indicators

- Let \hat{G} denote the set of isomorphism classes of simple $\mathbb{C}G$ -modules.
- [Frobenius-Schur] Let M be a compact non-orientable surface without boundary with Euler characteristic $\chi(M)$. Then

$$|\text{Hom}(\pi_1(M), G)| = \frac{1}{|G|^{\chi(M)-1}} \sum_{V \in \hat{G}} (\nu_2(V) \dim(V))^{\chi(M)},$$

- and $\nu_2(V) \in \{0, 1, -1\}$ for $V \in \hat{G}$.
- What does $\nu_n(V)$ count?
- Let $\theta_n(g) = \#\{x \in G \mid x^n = g\}$
- Then θ_n is a class function.
-

$$\theta_n(g) = \sum_{V \in \hat{G}} \nu_n(V) \chi_V(g) \quad \text{or} \quad \theta_n = \sum_{V \in \hat{G}} \nu_n(V) \chi_V.$$

FS-indicators beyond finite groups

- $\text{Rep}(G)$ is pivotal fusion category.
- FS-indicators has been generalized to the setting of pivotal categories.
- They have been essential to the proofs congruence conjectures
 - (i) in modular tensor categories (2010) and
 - (ii) vertex operator algebras (2015),
 - (iii) the rank finiteness conjecture of MTC by Zhenghan Wang (2016),
 - (iv) a conjecture of Galois action on modular tensor categories by Coste-Gannon (2015), which lead to the development of higher Gauss sums and central charges and an answer to the conjecture of Davydov-Nikshych-Ostrik on Witt group (2022).
- Wishful Thinking: the development of such tools in the nonsemisimple settings is indispensable.

FS-indicators for semisimple Hopf algebras

- Let H be a finite-dimensional **semisimple** Hopf algebra over \mathbb{C} with comultiplication $\Delta : H \rightarrow H \otimes H$ and counit $\varepsilon : H \rightarrow \mathbb{C}$ and antipode S .
- Semisimple* Hopf algebras are generalizations of the group algebras $\mathbb{C}G$.
- [Sweedler] If H is a semisimple Hopf algebra, there exists a unique element $\Lambda \in H$ such that $x\Lambda = \varepsilon(x)\Lambda$ and $\varepsilon(\Lambda) = 1$.
- Power map can be defined for any element $x \in H$:
 $x^{[n]} := m(\Delta_n(x)) = x_{(1)}x_{(2)} \cdots x_{(n)}$.
- Let $\chi_V : H \rightarrow \mathbb{C}$ denote the character of an H -module V .
- [Linchenko-Montgomery] Let H be a semisimple Hopf algebra. The n -th Frobenius-Schur indicator of an H -module V is defined as

$$\boxed{\nu_n(V) := \chi_V(\Lambda^{[n]}).$$

Frobenius-Schur Theorem and higher indicators

- [Linchenko-Montgomery] Let H be a semisimple Hopf algebra. For any simple H -module V ,

$$\nu_2(V) \in \{0, 1, -1\}.$$

The value of $\nu_2(V)$ can be determined by the existence of certain H -invariant non-degenerate bilinear forms on V .

- The regular H -module is H considered as an H -module by the multiplication.
- [Kashina-Sommerhauser-Zhu] $\boxed{\nu_n(H) = \text{Tr}(S \circ P_{n-1})}$, where $P_k(x) = x^{[k]}$ is the power map.
- $\nu_2(H) = \text{Tr}(S)$, $\nu_1(H) = 1$ and $\nu_0(H) = \text{Tr}(S^2) = \dim(H)$.

Invariance of these indicators

- [Ng-Schauenburg] Let H and K be quasi-Hopf Hopf algebras such that $\text{Rep}(H)$ and $\text{Rep}(K)$ are equivalent tensor category. Then there is a tensor equivalence $F : \text{Rep}(H) \rightarrow \text{Rep}(K)$ such that $F(H) \cong K$.
- If H and K are semisimple, and $\text{Rep}(H) \stackrel{\otimes}{\cong} \text{Rep}(K)$, then $\nu_n(H) = \nu_n(K)$ for all integers n .
- $\nu_2(\mathbb{C}D_8) = 6$ and $\nu_2(\mathbb{C}Q_8) = 2 \Rightarrow \text{Rep}(D_8) \not\stackrel{\otimes}{\cong} \text{Rep}(Q_8)$.
- A quantity $f(H)$ defined for each member H in a family of Hopf algebras, whose representation categories are closed under tensor equivalence, is called a **gauge invariant** if $f(H) = f(K)$ whenever $\text{Rep}(H)$ and $\text{Rep}(K)$ are equivalent tensor categories.
- The family of involutory Hopf algebras ($S^2 = \text{id}$) over a field of characteristic zero is closed (Larson-Radford).
- However, this family in positive characteristic is NOT closed.

Higher indicators of non-semisimple Hopf algebras

- In any non-semisimple Hopf algebras H , Left (resp. right) integrals $\{\Lambda \mid x\Lambda = \varepsilon(x)\Lambda\}$ form a 1-dimensional subspace of H but $\varepsilon(\Lambda) = 0$.
- The expression $\nu_n^{KMN}(H) := \text{Tr}(S \circ P_{n-1})$ is well-defined for any finite-dimensional Hopf algebras over any field.
- [Kashina-Montgomery-Ng] The sequence $\{\nu_n^{KMN}(H)\}$ is a gauge invariant of any finite dimensional Hopf algebra H over any field, i.e. if H' is another Hopf algebra such that H' -mod is equivalent to H -mod, then $\{\nu_n^{KMN}(H)\} = \{\nu_n^{KMN}(H')\}$.
- By computing $\nu_2^{KMN}(T)$ for any Taft algebra T , the module categories of any two non-isomorphic Taft algebras are inequivalent as tensor categories.
- If $H = T_4(-1)$, then $\nu_n(H) = n$.
- [Shimizu] If $H = u_q \mathfrak{sl}_2$, with $q = e^{2\pi i/3}$, then $\nu_n(H) = n^2$.

Kuperberg invariants of 3-manifolds

- Fusion categories are sources of invariants of 3-manifolds via topological quantum field theory (TQFT).
- If H is semisimple, $\nu_n(H)/\dim(H)$ is the RT-invariant of $L(n, 1)$ from the MTC $\text{Rep}(D(H))$.
- [Question:] Are these sequence of scalars $\{\nu_n^{KMN}(H)\}$ invariants of some 3-manifolds?
- Given any finite-dimensional Hopf algebra H over any field,
- Kuperberg constructed an invariant $K(M, f, H)$ for any closed oriented 3-manifold M with a framing f .
- [Chang-Z. Wang] If H is a *factorizable, ribbon* Hopf algebra over \mathbb{C} , then the Kuperberg invariant $K(M, f, H)$ of a Lens space M is independent of its framing f . Moreover,

$$K(L(n, 1), f, H) = \nu_n^{KMN}(H).$$

Kuperberg invariants of some Lens spaces

- [Chang-Ng-Y. Wang] For any Hopf algebra H , there is a specific framing f_n of $L(n, 1)$ for each positive integer n such that

$$K(L(n, 1), f_n, H) = \nu_n^{KMN}(H).$$

- The right hand side was known to be a gauge invariant, and so is this Kuperberg invariant.
- [Question] Is the Kuperberg invariant $K(M, f, H)$ for any framed 3-manifold (M, f) and Hopf algebra H a gauge invariant of H ?
- We have addressed this question for all genus 1 and a family of genus 2 framed 3-manifolds in our preprint arxiv:2506.07409.

Kuperberg invariants of framed 3-manifolds of genus 1

- Recall the Lens space $L(n, k)$ for any coprime integers n, k is the quotient space of $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}$ by the order n cyclic group $A_n = \langle g \rangle$ with the action:

$$g \cdot (z_1, z_2) = (e^{2\pi i/n} z_1, e^{2k\pi i/n} z_2).$$

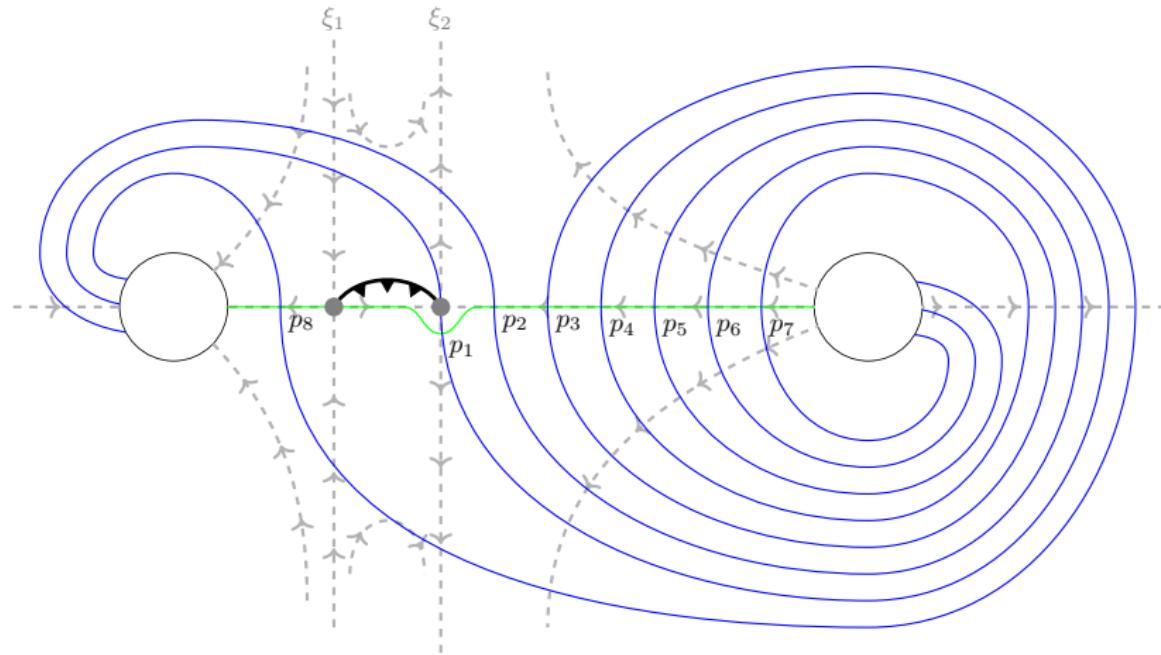
- What about the Kuperberg invariant $K(L(n, k), f, H)$?
- [Chang-Ng-Y. Wang] For any coprime $n, k \in \mathbb{N}$, there is a framing f on $L(n, k)$ s.t. $K(L(n, k), f, H) = \text{Tr}(S \circ P_{n,k})$ for some linear map $P_{n,k} \in \text{End}_{\mathbb{C}}(H)$ which is well-defined for any f.d Hopf algebra H .
Moreover, $K(L(n, k), f, H)$ is a gauge invariant for any framing f on $L(n, k)$.

Construction of Kuperberg invariants from a framed 3-manifolds

- A closed oriented 3-manifold M can always be obtained by gluing 2 genus n handle bodies on their boundaries Σ .
- The way these handle bodies are glued together is based on a mapping class of Σ , or a homeomorphism of Σ up to homotopy.
- A mapping class can be identified with n -disjoint closed curves on Σ .
- A framing of a 3-manifold consists of 3 1-dimension vector bundles which are orthogonal.
- The first vector bundle restricted on Σ is presented as a tangent bundle.
- The singularities will be the based points of these curves.
- Σ is presented on the plane with pairs of holes which represent the handles above the plane.
- The twist fronts are curves between based points on which the the second vector bundle is point out the plane.
- The 3rd vector bundle is determined by the right hand rule.

Some examples

The Heegaard diagram of $L(8,3)$ with a framing f .



Combinatorial data of the Heegaard diagram

The rotation numbers of the framed Heegaard diagram of f are recorded in the following table.

	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	total
θ_η	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
θ_μ	0	$-\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{3}{4}$	$-\frac{1}{2}$
S -term	S	S^3	S	S	S^3	S	S	S^3	.
ϕ_η	0	0	0	0	0	0	0	0	$\frac{1}{2}$
ϕ_μ	0	0	0	0	0	0	0	0	$\frac{1}{2}$
T -term	id	id	id	id	id	id	id	id	

$$\begin{aligned}
 K(L(8,3), f, H) &= (g \rightharpoonup \lambda) \left(S(\Lambda_{(1)}) S(\Lambda_{(4)}) S(\Lambda_{(7)}) S^3(\Lambda_{(2)}) S^3(\Lambda_{(5)}) \right. \\
 &\quad \left. S^3(\Lambda_{(8)}) S(\Lambda_{(3)}) S(\Lambda_{(6)}) \right) \\
 &= \lambda \left(\Lambda_{(6)} \Lambda_{(3)} S^2(\Lambda_{(8)}) S^2(\Lambda_{(5)}) S^2(\Lambda_{(2)}) \Lambda_{(7)} \Lambda_{(4)} \Lambda_{(1)} \right).
 \end{aligned}$$

where $\lambda \in H^*$ is a right integral and $\Lambda \in H$ a left integral such that $\lambda(\Lambda) = 1$.

Main Theorem

- Using the Radford trace formula, one can obtain

$$K(L(n, k), f, H) = \text{Tr}(S \circ P_{n,k})$$

for any coprime integers $n > k > 0$.

- $P_{n,n-1}(x) = P_{n-1}(x) = x^{[n-1]}$
- $P_{5,2}(x) = \sum_{(x)} x_{(3)} S^{-2}(x_{(1)}) S^{-2}(x_{(4)}) x_{(2)}$.

Theorem (Chang-Ng-Y. Wang)

The Kuperberg invariant $K(L(n, k), f, H)$ for any framing f of $L(n, k)$ is a gauge invariant.

- Let $F \in H \otimes H$ be a 2-cocycle, and H_F the corresponding Drinfeld twist of H .

$$K(L(n, k), f, H) = K(L(n, k), f, H_F).$$

- $K(S^3, f, H) = 1$ for any Hopf algebra.
- $K(S^2 \times S^1, f, H) = \text{Tr}(S^2)$ for any Hopf algebra.

Kuperberg invariants of the orbifolds of $SU(2)$

- How far can we push this idea?
- $SU(2) = \left\{ \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \right\} \simeq S^3$.
- Consider $A_n = \left\langle \begin{pmatrix} e^{2\pi i/n} & 0 \\ 0 & e^{-2\pi i/n} \end{pmatrix} \right\rangle \subset SU(2)$.
- $SU(2)/A_n \simeq L(n, n-1) \simeq L(n, 1)$.
- $\nu_n^{KMN}(H) = K(SU(2)/A_n, f, H)$ for some framing f .
- The dicyclic group Dic_n of order $4n$ for $n \geq 2$, a central \mathbb{Z}_2 extension of D_{2n} , is also a subgroup of $SU(2)$.
- $K(SU(2)/Dic_n, f_n, H)$ is another sequence of 3-manifold invariants.
- [Chang-Ng-Y. Wang] For each positive integer n , there exists a framing f_n such that $K(SU(2)/Dic_n, f_n, H)$ is a gauge invariant.

Kuperberg invariants of Q_8 -orbifolds

- $Dic_2 = Q_8$.
- There exists a framing f on $SU(2)/Q_8$ such that
- $K(SU(2)/Q_8, f, H) =$

$$\lambda(\Lambda_{(4)}^2 S(\Lambda_{(3)}^1) S^2(\Lambda_{(2)}^2) \Lambda_{(1)}^1) \cdot \lambda(S^2(\Lambda_{(4)}^1) S(\Lambda_{(3)}^2) \Lambda_{(2)}^1 \Lambda_{(1)}^2),$$

where $\lambda \in H^*$ is a right integral and $\Lambda^1 \otimes \Lambda^2 \in H \otimes H$ is left integral such that $\lambda(\Lambda^1) = \lambda(\Lambda^2) = 1$.

Heegaard diagram of S^3/Q_8

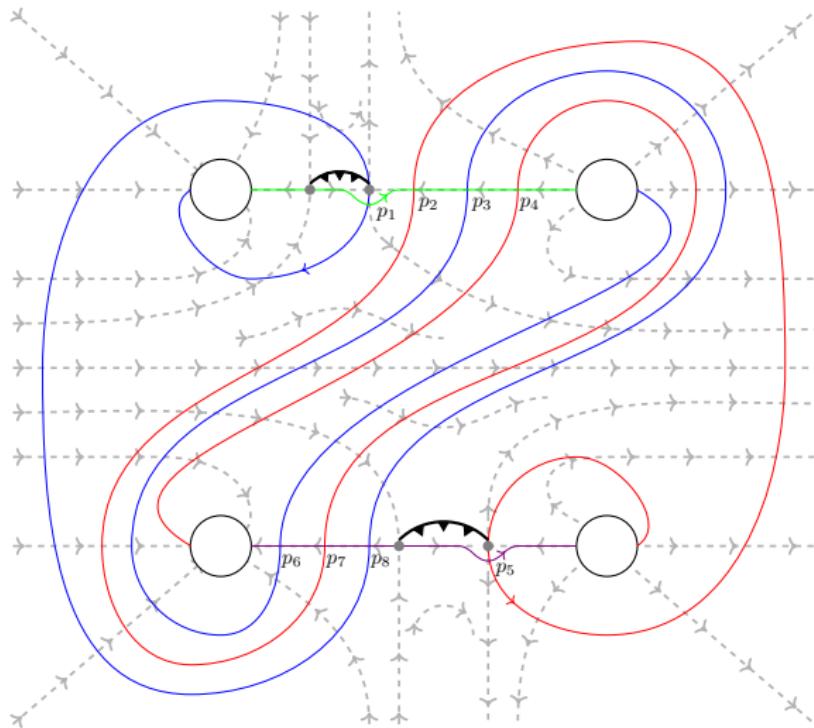


Figure 1: A framed Heegaard diagram of $M = S^3/Q_8$.

Thank you for your attention !