

Geometric constructions of multi-parameter quantum Schur algebras and iquantum groups

Li Luo

East China Normal University

Conference on Hopf Algebra and Tensor Categories
TSIMF · Sanya · 2026

- \mathbb{F}_q : finite field with $q = p^a$ elements; p is a prime number.
- \mathbf{G} : a connected reductive algebraic group defined over \mathbb{F}_q .
- $G = \mathbf{G}(\mathbb{F}_q)$: the group of \mathbb{F}_q -points of \mathbf{G} .
- Fix a **Borel subgroup** B and a **maximal torus** $T \subset B$ of G .
- $W = N_G(T)/T$: the **Weyl group** of G (associated to T).
- $\mathcal{B} = G/B$: **complete flag variety**.
- G acts diagonally on $\mathcal{B} \times \mathcal{B} = \bigsqcup_{w \in W} \mathcal{O}_w$. The G -orbits \mathcal{O}_w are in one-to-one correspondence with $w \in W$ thanks to the **Bruhat decomposition** $G = \bigsqcup_{w \in W} BwB$.
- The **convolution product** \star on the space of G -invariant functions on $\mathcal{B} \times \mathcal{B}$ is defined by

$$f \star h(B, \dot{w}B) = \sum_{xB \in G/B} f(B, xB) h(xB, \dot{w}B).$$

- T_w : the characteristic function of \mathcal{O}_w ($w \in W$).
- s_1, \dots, s_d : the simple reflections of W .

$$\begin{aligned} T_{s_i} \star T_{s_i}(B, \dot{w}B) &= \sum_{xB \in G/B} T_{s_i}(B, xB) T_{s_i}(xB, \dot{w}B) \\ &= \#\{xB \in G/B \mid x \in B s_i B \cap \dot{w} B s_i B\} \\ &= \begin{cases} \mathbf{q}, & \dot{w} = 1 \\ \mathbf{q} - 1, & \dot{w} = s_i \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

i.e., $T_{s_i} \star T_{s_i} = (\mathbf{q} - 1) T_{s_i} + \mathbf{q}$.

Moreover, braid relations for T_{s_i} ($i = 1, 2, \dots, d$) hold.

- q : an indeterminate.
- $\mathcal{A} := \mathbb{Z}[q, q^{-1}]$.
- $\mathbf{H} = \mathbf{H}(W)$: Hecke algebra over \mathcal{A} generated by H_1, H_2, \dots, H_d with $(H_i - q^{-1})(H_i + q) = 0$ ($i = 1, 2, \dots, d$) and braid relations.
- $\tilde{\mathbf{H}}$: (extended) affine Hecke algebra.

Theorem (Iwahori 64')

- $\mathbf{H}|_{q=q^{-2}} \simeq \mathbb{Z}^{\mathbf{G}(\mathbb{F}_q)}[\mathcal{B} \times \mathcal{B}] \simeq \mathbb{Z}[B \backslash \mathbf{G}(\mathbb{F}_q) / B]$.
- $\tilde{\mathbf{H}}|_{p=q^{-2}} \simeq \mathbb{Z}[I \backslash \mathbf{G}(\mathbb{Q}_p) / I]$, where I is the Iwahori subgroup of $\mathbf{G}(\mathbb{Q}_p)$ over the p -adic field \mathbb{Q}_p .

Background II: Equivariant K-theoretic construction

- $G = \mathbf{G}(\mathbb{C})$: complex connected reductive algebraic group.
- $\mathfrak{n} \subset \mathfrak{g} = \text{Lie}(G)$: nilradical of $\mathfrak{b} = \text{Lie}(B)$.
- \mathcal{N} : nilpotent cone of \mathfrak{g} , i.e. the variety of all nilpotent elements of \mathfrak{g} .
- $\tilde{\mathcal{N}} := T^* \mathcal{B} \simeq G \times^B \mathfrak{n}$: cotangent bundle of \mathcal{B} .
(Springer resolution $\tilde{\mathcal{N}} \rightarrow \mathcal{N}$. It is a deep mathematical principle that the resolution at the singularity of \mathcal{N} encodes rich representation-theoretic information.)
- Steinberg variety

$$\begin{aligned} Z &:= T^* \mathcal{B} \times_{\mathcal{N}} T^* \mathcal{B} \\ &\simeq \{(x, gB, g'B) \in \mathcal{N} \times \mathcal{B} \times \mathcal{B} \mid x \in (\text{Ad}g)(\mathfrak{n}) \cap (\text{Ad}g')(\mathfrak{n})\} \\ &= \bigsqcup_{w \in W} T^*_{\mathcal{O}_w}, \end{aligned}$$

where $T^*_{\mathcal{O}_w}$ is the conormal bundle of \mathcal{O}_w in $\mathcal{B} \times \mathcal{B}$.

All irreducible components of Z are $\overline{T^*_{\mathcal{O}_w}}$ ($w \in W$).

- X : a G -variety.
- The 0-th **equivariant K-group**
 $K^G(X) :=$ the Grothendieck group of the category of G -equivariant coherent sheaves on X .
- In particular, $K^G(pt) = R(G)$ is the **representation ring** of G .
- For G -varieties M_1, M_2, M_3 , let $Z_{12} \subset M_1 \times M_2$ and $Z_{23} \subset M_2 \times M_3$ be G -subvarieties. Under some technical assumption, there is a convolution product

$$\star : K^G(Z_{12}) \otimes_{K^G(M_2)} K^G(Z_{23}) \rightarrow K^G(Z_{12} \circ Z_{23}),$$

where $Z_{12} \circ Z_{23}$ is the set-theoretic composition

$$Z_{12} \circ Z_{23} := \{(x_1, x_3) \in M_1 \times M_3 \mid \text{there exists } x_2 \in M_2 \text{ such that } (x_1, x_2) \in Z_{12}, (x_2, x_3) \in Z_{23}\}.$$

- Let $G \times \mathbb{C} \setminus \{0\}$ act on $\mathcal{B} \times \mathfrak{g}$ by $(s, z) \cdot (gB, x) = (sgB, z^2 \text{Ad}_s(x))$, and then act diagonally on Z .
- $R(G \times \mathbb{C} \setminus \{0\}) \simeq R(G)[q, q^{-1}]$, where q means the tautological representation of $\mathbb{C} \setminus \{0\}$.

Theorem (Kazhdan-Lusztig 85', Ginzburg 87')

$$\widetilde{\mathbf{H}} \simeq K^{G^L \times \mathbb{C} \setminus \{0\}}(Z^L),$$

where G^L is the Langlands dual of G and Z^L is the Steinberg variety of G^L .

Langlands reciprocity:

$$\mathbb{Z}[I \backslash G(\mathbb{Q}_p)/I] \simeq K^{G^L \times \mathbb{C} \setminus \{0\}}(Z^L)|_{p=q^{-2}}$$

From Hecke algebras to Schur algebras

Type A:

- **complete flag variety**

$$\mathcal{B} = \{F = (0 = F_0 \subset F_1 \subset \cdots \subset F_d = \mathbb{F}_q^d) \mid \dim F_i = i\}.$$

$$\begin{array}{ccccccc} G/B & \simeq & \text{the set of Borel subgroups} & & \simeq & \mathcal{B} \\ [g] & \mapsto & g \cdot \mathfrak{b} \cdot g^{-1} & & & \\ & & \mathfrak{b}_F = \{x \in g \mid x(F_i) \subset F_i, \forall i\} & \leftarrow & & F \end{array}$$

- **n -step flag variety**

$$\mathcal{F} = \{F = (0 = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = \mathbb{F}_q^d)\} \simeq \bigsqcup_{\gamma} G/P_{\gamma},$$

where $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_n)$ runs over all weak composition of d into n parts, and $P_{\gamma} := \bigsqcup_{w \in W_{\gamma}} BwB \subset G$ with

$$W_{\gamma} := \langle s_i \mid i \neq \gamma_1, \gamma_1 + \gamma_2, \dots, \gamma_1 + \gamma_2 + \dots + \gamma_{n-1} \rangle \subset W.$$

What are the objects (instead of Hecke algebras) if \mathcal{B} is replaced by \mathcal{F} ?

- Schur-Jimbo duality (of type A):

$$\mathbf{U}_q(\mathfrak{gl}_n) \rightarrowtail \mathbf{S}_{n,d} \hookrightarrow V^{\otimes d} \hookleftarrow \mathbf{H},$$

- $\mathbf{S}_{n,d} = \text{End}_{\mathbf{H}}(V^{\otimes d}) = \text{End}_{\mathbf{H}}(\bigoplus_{\gamma} x_{\gamma} \mathbf{H})$: the Schur algebra of type A_{d-1} , where $x_{\gamma} = \sum_{w \in W_{\gamma}} (-1)^{\ell(w)} H_w \in \mathbf{H}$ is the q-symmetrizer respect to γ .
- $\tilde{\mathbf{S}}_{n,d} = \text{End}_{\tilde{\mathbf{H}}}(\bigoplus_{\gamma} x_{\gamma} \tilde{\mathbf{H}})$: affine Schur algebra (of type A).

Theorem (Beilinson-Lusztig-MacPherson 90')

$$\mathbf{S}_{n,d}|_{\mathbf{q}=q^{-2}} \simeq \mathbb{Z}^{\mathbf{G}(\mathbb{F}_q)}[\mathcal{F} \times \mathcal{F}] \simeq \mathbb{Z}[\bigsqcup_{\gamma, \nu} P_\gamma \backslash \mathbf{G}(\mathbb{F}_q) / P_\nu].$$

Beilinson-Lusztig-MacPherson realization of $\mathbf{U}_q(\mathfrak{gl}_n)$: establish a stabilization property from some multiplication formulas of $\mathbf{S}_{n,d}$, by which one can construct an inverse limit algebra in which $\mathbf{U}_q(\mathfrak{gl}_n)$ embeds:

$$\begin{array}{ccc} \mathbf{S}_{n,d} & & \\ \text{stabilization} & \Downarrow & \\ \varprojlim_d \mathbf{S}_{n,d} & \hookrightarrow & \mathbf{U}_q(\mathfrak{gl}_n). \end{array}$$

- Recall the n -step flag variety $\mathcal{F} \simeq \bigsqcup_{\gamma} G/P_{\gamma}$, where γ runs over all composition of d into n parts. Denote $\mathcal{F}_{\gamma} = G/P_{\gamma}$.
- $\tilde{\mathcal{N}}_{\mathbf{f}} := \bigsqcup_{\gamma} \tilde{\mathcal{N}}_{\gamma}$ with $\tilde{\mathcal{N}}_{\gamma} := T^* \mathcal{F}_{\gamma} \simeq G \times^{P_{\gamma}} \mathfrak{n}_{\gamma}$, where \mathfrak{n}_{γ} is the nilradical of $\text{Lie}(P_{\gamma})$.
- Generalized Steinberg variety

$$\begin{aligned}
 Z_{\mathbf{f}} &:= \tilde{\mathcal{N}}_{\mathbf{f}} \times_{\mathcal{N}} \tilde{\mathcal{N}}_{\mathbf{f}} = \bigsqcup_{\gamma, \nu} \tilde{\mathcal{N}}_{\gamma} \times_{\mathcal{N}} \tilde{\mathcal{N}}_{\nu} \\
 &= \{((gP_{\gamma}, x), (g'P_{\nu}, x)) \in \tilde{\mathcal{N}}_{\gamma} \times \tilde{\mathcal{N}}_{\nu} \mid \gamma, \nu \in \Lambda_{\mathbf{f}}\} \\
 &\simeq \{(x, gP_{\gamma}, g'P_{\nu}) \in \mathcal{N} \times \mathcal{F}_{\mathbf{f}} \times \mathcal{F}_{\mathbf{f}} \mid \\
 &\quad \gamma, \nu \in \Lambda_{\mathbf{f}}, x \in (\text{Ad}g)(\mathfrak{n}_{\gamma}) \cap (\text{Ad}g')(\mathfrak{n}_{\nu})\}.
 \end{aligned}$$

Theorem (Lusztig 99')

There is a surjective homomorphism $\mathbf{U}_q(\widetilde{\mathfrak{gl}}_n) \twoheadrightarrow \widetilde{\mathbf{S}}_{n,d}$, with $\widetilde{\mathbf{S}}_{n,d}|_{p=q^{-2}} \simeq \mathbb{Z}[\bigsqcup_{\gamma, \nu} I_\gamma \backslash \mathbf{G}(\mathbb{Q}_p)/I_\nu]$, where $I_\gamma := \bigsqcup_{w \in W_\gamma} I w I$ is the parahoric subgroup of $\mathbf{G}(\mathbb{Q}_p)$ associated with γ .

Theorem (Ginzburg-Vasserot 93')

There is a homomorphism $\mathbf{U}_q(\widetilde{\mathfrak{gl}}_n) \rightarrow K^{G \times \mathbb{C} \setminus \{0\}}(Z_f)$.

Question:

- $K^{G \times \mathbb{C} \setminus \{0\}}(Z_f) \simeq \widetilde{\mathbf{S}}_{n,d}$? i.e. Langlands reciprocity?
Yes, known to experts. (a folklore result with a folklore proof).
- What is the story other than type A?
Note that $\mathbf{U}_q(\mathfrak{so})$ and $\mathbf{U}_q(\mathfrak{sp})$ do NOT admit a Schur-type duality with Hecke algebras.

Theorem (Bao-Wang 18', iSchur duality)

$\mathbf{U}^{\natural} \hookrightarrow V^{\otimes d} \hookleftarrow \mathbf{H}_{B_d}$, where \mathbf{U}^{\natural} is the coideal subalgebra of $\mathbf{U}_q(\mathfrak{gl}_N)$ whose classical limit is $\mathfrak{gl}_{[N/2]} \oplus \mathfrak{gl}_{[N/2]}$, V is the natural module of $\mathbf{U}_q(\mathfrak{gl}_N)$.

- $(\mathbf{U}_q(\mathfrak{gl}_N), \mathbf{U}^{\natural})$ forms a quantum symmetric pair of type AIII in the sense of [Lezter 99'](#). \mathbf{U}^{\natural} is named an iquantum group of type AIII.
- $\mathbf{S}^{\natural} := \text{End}_{\mathbf{H}_{B_d}}(V^{\otimes d})$, Schur algebra of type B/C.

- $\mathbf{G} = \mathbf{SO}_D$ or \mathbf{Sp}_D , whose natural representation space $\mathbb{F}_{\mathbf{q}}^D$ carries a nondegenerate bilinear form preserved by \mathbf{G} .
- $\mathcal{F}^{\imath} := \{F = (0 = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_N = \mathbb{F}_{\mathbf{q}}^D) \mid F_i = F_{N-i}^{\perp}\}$: the ***N*-step isotropic flag variety**.

Theorem (Bao-Kujawa-Li-Wang 18')

- $\mathbf{S}^{\imath}|_{\mathbf{q}=q^{-2}} \simeq \mathbb{Z}^{\mathbf{G}(\mathbb{F}_{\mathbf{q}})}[\mathcal{F}^{\imath} \times \mathcal{F}^{\imath}]$.
- *A Beilinson-Lusztig-MacPherson-type realization of \mathbf{U}^{\imath} .*

For example, if we take $\mathbf{G} = \mathbf{SO}_{2d+1}$ and $N = 2n + 1$, then

$$\mathcal{F}^{\imath} \simeq \bigsqcup_{\gamma} G/P_{\gamma},$$

where $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n)$ runs over all weak compositions of d into $n+1$ parts, and $P_{\gamma} = \bigsqcup_{w \in W_{\gamma}} BwB$ with $W_{\gamma} := \langle s_i \mid i \neq \gamma_0, \gamma_0 + \gamma_1, \dots, \gamma_0 + \gamma_1 + \dots + \gamma_{n-1} \rangle \subset W$. Here the Weyl group W is generated by s_0, s_1, \dots, s_{d-1} .

- $\tilde{\mathbf{U}}^{\imath}$: iquantum group of affine type AIII. It is a coideal subalgebra of $\mathbf{U}_q(\tilde{\mathfrak{gl}}_n)$.
- $\tilde{\mathbf{S}}^{\imath} = \text{End}_{\tilde{\mathbf{H}}_{C_d}}(\tilde{V}^{\otimes d})$: affine Schur algebra of type C, where \tilde{V} is the natural (inf. dim.) module of $\mathbf{U}_q(\tilde{\mathfrak{gl}}_n)$.
- $\tilde{\mathcal{F}}^{\imath} := \bigsqcup_{\gamma} \mathbf{G}(\mathbb{Q}_p)/I_{\gamma}$, where $I_{\gamma} := \bigsqcup_{w \in W_{\gamma}} IwI$ is the parahoric subgroup of $\mathbf{G}(\mathbb{Q}_p)$ associated with γ .

Here is a type C counterpart of Lusztig's theorem for type A.

Theorem (Fan-Lai-Li-L-Wang 20')

- $\tilde{\mathbf{S}}^{\imath}|_{p=q^{-2}} \simeq \mathbb{Z}^{\mathbf{G}(\mathbb{Q}_p)}[\tilde{\mathcal{F}}^{\imath} \times \tilde{\mathcal{F}}^{\imath}]$.
- A Beilinson-Lusztig-MacPherson-type realization of $\tilde{\mathbf{U}}^{\imath}$ via a stabilization property of $\tilde{\mathbf{S}}^{\imath}$.

- $\mathcal{F}_\gamma = G/P_\gamma$.
- $\tilde{\mathcal{N}}_f := \bigsqcup_\gamma \tilde{\mathcal{N}}_\gamma$ with $\tilde{\mathcal{N}}_\gamma := T^* \mathcal{F}_\gamma \simeq G \times^{P_\gamma} \mathfrak{n}_\gamma$.
- Generalized Steinberg variety

$$Z_f := \tilde{\mathcal{N}}_f \times_{\mathcal{N}} \tilde{\mathcal{N}}_f = \bigsqcup_{\gamma, \nu} \tilde{\mathcal{N}}_\gamma \times_{\mathcal{N}} \tilde{\mathcal{N}}_\nu.$$

Here is a type C counterpart of Ginzburg-Vasserot's theorem for type A.

Theorem (Su-Wang 24', L-Xu-Su preprint)

There is a homomorphism $\tilde{\mathbf{U}}^{\natural} \rightarrow K^{G \times \mathbb{C} \setminus \{0\}}(Z_f)$.

At the Schur algebra level, the above discussion (for affine types A and C) already suggests a framework suitable for all general types.

General type

- G : reductive algebraic group, with Weyl group W .
- Hecke algebra \mathbf{H} and extended affine Hecke $\tilde{\mathbf{H}}$ of G .
- Borel subgroup $B \subset G$.
- Take any finite W -invariant subset X_f in the weight lattice.
- Λ_f : the set of W -orbits on X_f .
- For any W -orbit $\gamma \in \Lambda_f$, let $J_\gamma = \{k \mid 1 \leq k \leq d, \mathbf{i}_\gamma s_k = \mathbf{i}_\gamma\}$, where \mathbf{i}_γ is the unique anti-dominant element in γ .
- $W_\gamma = \langle s_k \mid k \in J_\gamma \rangle \subset W$; $P_\gamma = \bigsqcup_{w \in W_\gamma} BwB$.
- $\mathbf{T}_f := \bigoplus_{\gamma \in \Lambda_f} x_\gamma \mathbf{H}$, where $x_\gamma = \sum_{w \in W_\gamma} q^{-\ell(w)} H_w \in \mathbf{H}$.
- Schur algebra $\mathbf{S}_f := \text{End}_{\mathbf{H}}(\mathbf{T}_f)$.
- Affine Schur algebra $\tilde{\mathbf{S}}_f := \text{End}_{\tilde{\mathbf{H}}}(\tilde{\mathbf{T}}_f)$ where $\tilde{\mathbf{T}}_f := \bigoplus_{\gamma \in \Lambda_f} x_\gamma \tilde{\mathbf{H}}$.

Example (type A_{d-1}):

Take $X_f = \{\sum_{i=1}^d a_i \epsilon_i \mid a_i \in \mathbb{Z}, 1 \leq a_i \leq n\}$.

In this case, $\mathbf{T}_f \simeq V^{\otimes d}$ and $\mathbf{S}_f = \mathbf{S}_{n,d}$.

Realization of \mathbf{S}_f and $\tilde{\mathbf{S}}_f$

Theorem (L-Wang 22')

$$\mathbf{S}_f|_{\mathbf{q}=q^{-2}} \simeq \mathbb{Z}[\bigsqcup_{\gamma, \nu \in \Lambda_f} P_\gamma \backslash G(\mathbb{F}_\mathbf{q})/P_\nu].$$

Theorem (Cui-L-Wang 24')

$$\tilde{\mathbf{S}}_f|_{p=q^{-2}} \simeq \mathbb{Z}[\bigsqcup_{\gamma, \nu \in \Lambda_f} I_\gamma \backslash G(\mathbb{Q}_p)/I_\nu].$$

- $\mathcal{F}_f = \bigsqcup_{\gamma \in \Lambda_f} \mathcal{F}_\gamma$ with $\mathcal{F}_\gamma = G/P_\gamma$.
- \mathfrak{n}_γ : the nilradical of $\text{Lie}(P_\gamma)$.
- $\tilde{\mathcal{N}}_f := \bigsqcup_{\gamma \in \Lambda_f} \tilde{\mathcal{N}}_\gamma$ with $\tilde{\mathcal{N}}_\gamma := T^* \mathcal{F}_\gamma \simeq G \times^{P_\gamma} \mathfrak{n}_\gamma$.
- $Z_f := \tilde{\mathcal{N}}_f \times_{\mathcal{N}} \tilde{\mathcal{N}}_f = \bigsqcup_{\gamma, \nu \in \Lambda_f} \tilde{\mathcal{N}}_\gamma \times_{\mathcal{N}} \tilde{\mathcal{N}}_\nu$

Theorem (L-Xu-Yang 24')

$$\tilde{\mathbf{S}}_f \simeq K^{G^L \times \mathbb{C} \setminus \{0\}}(Z_f^L).$$

Locally geometric Langlands reciprocity for affine Schur algebras

Corollary (L-Xu-Yang 24')

$$K^{G^L \times \mathbb{C} \setminus \{0\}}(Z_f^L)|_{p=q^{-2}} \simeq \mathbb{Z}[\bigsqcup_{\gamma, \nu \in \Lambda_f} I_\gamma \backslash G(\mathbb{Q}_p) / I_\nu].$$

- Particularly, we provided a correct proof of the folklore result for affine type A (instead of the unlegal folklore proof which uses a wrong statement $x_\lambda \mathbf{H} x_\nu \simeq K^{G^L \times \mathbb{C} \setminus \{0\}}(\tilde{\mathcal{N}}_\gamma \times_{\mathcal{N}} \tilde{\mathcal{N}}_\nu)$).
- Specialize X_f a single regular W -orbit: the Langlands reciprocity for affine Hecke algebras.
- Specialize $X_f = \{\gamma = 0\}$: the **Satake isomorphism**.

The story does not end here. We also expect unequal-parameter variants for types B, C, F and G.

Why do we study the unequal-parameter variants?

- It is not at all obvious from a geometric construction perspective, though a purely algebraic approach was provided by [Lai-L 21'](#) for finite type C and by [L-Yu 25'](#) for affine type C.
- Finite type C with two parameters provides a uniform framework for the one-parameter finite types B, C and D, while affine type C with three parameters provides a uniform framework for the one-parameter affine types B, C and D.

- $G = \mathbf{G}(\mathbb{K})$ with $\mathbb{K} = \overline{\mathbb{F}_q}$.
- $F_q : G \rightarrow G$: the **Frobenius map** relative to \mathbb{F}_q .
(For a linear group G , $F_q((a_{ij})) = (a_{ij}^q)$).
- Take a F_q -stable Borel subgroup B and an F_q -stable maximal torus $T \subset B$.
- τ : a nontrivial graph automorphism of the Dynkin diagram, which induce an endomorphism of G (still denoted by τ).
- **Steinberg endomorphism** $F = F_q \circ \tau : G \rightarrow G$.
 B and T are both F -stable.
- the fixed-point subgroup G^F of G , called a **twisted finite group of Lie type**. Similarly, B^F and T^F .

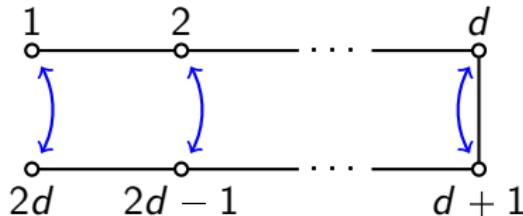


Figure 1: Type A_{2d}

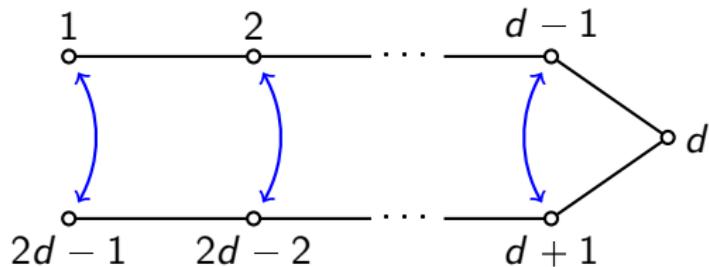
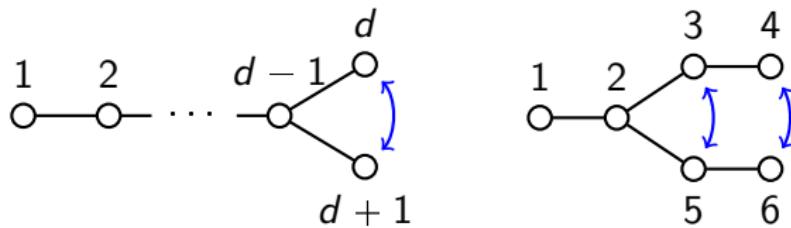
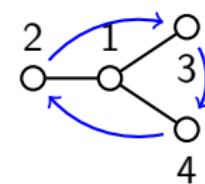


Figure 2: Type A_{2d-1}

Example: $G = GL_D(\mathbb{K})$ and $G^F = GU_D(\mathbb{F}_{q^2})$.



- Since T is F -stable, we can define an F -action on $W = N_G(T)/T$ by $F(gT) = F(g)T$. It is known $W^F = (N_G(T)/T)^F \simeq N_{G^F}(T)/T^F$.
- Each τ -orbit on the set of simple roots determines a parabolic subgroup of W , which has a unique longest element. Let t_1, t_2, \dots, t_d be all these longest elements.
- W^F is just the Weyl group associated with the folding Dynkin diagram, whose simple reflections are t_1, t_2, \dots, t_d .

W	W^F	t_1, t_2, \dots, t_d
A_{2d}	B_d	$s_1s_{2d}, s_2s_{2d-1}, \dots, s_{d-1}s_{d+2}, s_d s_{d+1} s_d$
A_{2d-1}	B_d	$s_1s_{2d-1}, s_2s_{2d-2}, \dots, s_{d-1}s_{d+1}, s_d$
D_{d+1}	B_d	$s_1, s_2, \dots, s_{d-1}, s_d s_{d+1}$
E_6	F_4	$s_1, s_2, s_3 s_5, s_4 s_6$
D_4	G_2	$s_1, s_2 s_3 s_4$

- Bruhat decomposition reads

$$G^F = \bigsqcup_{w \in W^F} B^F w B^F.$$

- $|B^F w B^F| = \mathbf{q}^{\ell(w)} |B^F|$,
where $\ell(w)$ is the length function of W (NOT of W^F).
- $T_{t_i} \star T_{t_i} = (\mathbf{q}^{\ell(t_i)} - 1) T_{t_i} + \mathbf{q}^{\ell(t_i)}$ and the braid relations still hold. This realizes the unequal-parameter Hecke algebra \mathbb{H} .
- \mathbb{S} : Schur algebra with unequal parameters.
- Similar notation W_γ^F , P_γ^F for a W^F -orbit γ in the sublattice of F -invariant weights.

Theorem (L-Song-Yang)

- $\mathbb{S}|_{\mathbf{q}=q^{-2}} \simeq \mathbb{Z}[\bigsqcup_{\gamma, \nu} P_\gamma^F \backslash G^F / P_\nu^F]$.
- If W^F is of type B/C , we further provide a Beilinson-Lusztig-MacPherson-type realization of the quantum group \mathbb{U} of type $AI\!I$ with unequal parameters.

The above geometric setting for twisted groups can NOT provide an equivariant K-theoretic construction for multi-parameter Schur algebras and iquantum groups. We have to employ an exotic setting introduced by [Kato 09'](#) as follows.

Affine type C with three parameters

- $G = Sp_{2d}(\mathbb{C})$ with the standard module $V = \mathbb{C}^{2d}$.
- Π : the root system with simple roots
 $\alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = \epsilon_2 - \epsilon_3, \dots, \alpha_{d-1} = \epsilon_{d-1} - \epsilon_d, \alpha_d = 2\epsilon_d$.
- $\mathbb{V} = V^{\oplus 2} \oplus \wedge^2 V$: the **exotic representation** of G .
- The set of non-zero weights of \mathbb{V} is

$$R = \{\pm \epsilon_i\}_{1 \leq i \leq d} \cup \{\pm \epsilon_i \pm \epsilon_j\}_{1 \leq i, j \leq d},$$

which corresponds one-to-one to the root system Π by a W -equivariant map

$$\Psi : \Pi \rightarrow R \quad \text{via} \quad \pm \epsilon_i \pm \epsilon_j \mapsto \pm \epsilon_i \pm \epsilon_j; \quad \pm 2\epsilon_i \mapsto \pm \epsilon_i.$$

- $\mathbb{V}^+ := \bigoplus_{\alpha \in \Psi(\Pi^+)} \mathbb{V}[\alpha]$, which is a B -module.
- $\tilde{\mathcal{N}} := G \times^B \mathbb{V}^+$ (replace \mathfrak{n} by \mathbb{V}^+ in $T^* \mathcal{B} \simeq G \times^B \mathfrak{n}$).
- $Z := \tilde{\mathcal{N}} \times_{\mathbb{V}} \tilde{\mathcal{N}}$, the **exotic Steinberg variety**.

- Let $G \times (\mathbb{C} \setminus \{0\})^3$ acts on \mathbb{V} by
$$(g, z_0, z_1, z_2) \cdot (v_0, v_1, v_2) \mapsto (z_0^{-1}gv_0, z_1^{-1}gv_1, z_2^{-1}gv_2),$$
where $v_0, v_1 \in V$ and $v_2 \in \wedge^2 V.$
- $R(G \times (\mathbb{C} \setminus \{0\})^3) \simeq R(G)[q_0^{\pm 1}, q_1^{\pm 1}, q_2^{\pm 1}],$ where q_i ($i = 0, 1, 2$) mean the tautological representation of $(i + 1)$ -th factor of $(\mathbb{C} \setminus \{0\})^3.$

Theorem (Kato 09')

The affine type C Hecke algebra with three parameters:

$$\tilde{\mathbb{H}} \simeq K^{G \times (\mathbb{C} \setminus \{0\})^3}(Z).$$

Affine type C with three parameters

- For a weak composition $\lambda = (\lambda_1, \dots, \lambda_{n+1})$ of d , set

$$\mathbb{V}_\lambda^+ = \bigoplus_{\alpha \in \Psi(\Pi^+) \setminus \Psi(\Pi_\lambda^+)} \mathbb{V}[\alpha],$$

which is a P_λ -module. Here Π_λ is the root system with simple roots $\{\alpha_i \mid i \neq \lambda_1, \lambda_1 + \lambda_2, \dots, \lambda_1 + \dots + \lambda_n\}$.

- $\tilde{\mathcal{N}}_f := \bigsqcup_\lambda \tilde{\mathcal{N}}_\lambda$ with $\tilde{\mathcal{N}}_\lambda := G \times^{P_\lambda} \mathbb{V}_\lambda^+$
(replace \mathfrak{n}_λ by \mathbb{V}_λ^+ in $T^* \mathcal{F}_\lambda \simeq G \times^{P_\lambda} \mathfrak{n}_\lambda$).
- The **generalized exotic Steinberg variety** $Z_f := \tilde{\mathcal{N}}_f \times_{\mathbb{V}} \tilde{\mathcal{N}}_f$.

Theorem (L-Xu-Yang)

$$\tilde{\mathbb{U}}^i \twoheadrightarrow \tilde{\mathbb{S}}^i \simeq K^{G \times (\mathbb{C} \setminus \{0\})^3}(Z_f).$$

- G : a simple algebraic group of non simply-laced type (i.e., type BCFG) defined over $\mathbf{k} = \bar{\mathbf{k}}$ with special char \mathbf{k} .
- Special char \mathbf{k} means it equals the ratio's square of the lengths of the long and short roots of G , i.e.
 - char $\mathbf{k} = 2$ when G is of type B,C or F_4 ;
 - char $\mathbf{k} = 3$ when G is of type G_2 .

Lemma (Hogeweij 82', Hiss 84')

If char \mathbf{k} is special, then there is a G -submodule $\mathfrak{g}_s \subset \mathfrak{g}$ whose non-zero weights are the short roots of G .

- **Exotic representation:** $\mathbb{V} = \mathfrak{g}_s \oplus \mathfrak{g}/\mathfrak{g}_s$, whose non-zero weights are the roots of G .

Affine type BCFG with two parameters

Using the exotic representation \mathbb{V} of G , one can introduce the exotic Steinberg varieties Z and Z_f for affine type BCFG with two parameters.

Theorem (Antor 25')

The affine type BCFG Hecke algebra with two parameters:

$$\widetilde{\mathbb{H}} \simeq K^{G \times (\mathbf{k} \setminus \{0\})^2}(Z).$$

Theorem (L-Xu-Yang)

The affine type BCFG Schur algebra with two parameters:

$$\widetilde{\mathbb{S}}_f \simeq K^{G \times (\mathbf{k} \setminus \{0\})^2}(Z_f).$$

Thank you for your attention!