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ĝlm|n,s

)

H. Zhang (SHU) January 20, 2026 1 / 39



Background

Contents

1 Background

2 glm|n and their quantization

3 Representations of Uq

(
glm|n,s

)
4 Uq

(
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Background

Background

Quantum groups were independently introduced by Drinfeld[1] and
Jimbo[2] around 1985, commonly known as Drinfeld-Jimbo
presentation.

In Drinfeld-Jimbo framework, a quantum group is a q-deformation
Uq

(
a
)
of the universal enveloping algebra U

(
a
)
of a Kac-Moody

algebra a.

[1] V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (5)

(1985) 1060–1064

[2] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985)

63–69
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Background

Background

Another construction[3] of the quantized enveloping algebra Uq

(
a
)

describes it as an associative algebra whose defining relations are
expressed in terms of a R-matrix R.

This approach, known as the RTT presentation, naturally equips
Uq

(
a
)
with the structure of a Hopf algebra. This presentation carries

a natural comultiplication, which is useful for studying tensor
products of representations.

The matrix R here is a solution of the following quantum
Yang-Baxter equation:

R12R13R23 = R23R13R12,

where R12 := R⊗ 1, etc.

[3] N. Reshetikhin, L. Takhtadzhyan, L. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad

Math. J. 1 (1990) 193–226
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Background

Background

Among the major families of quantized enveloping algebras, two are especially
important: Yangians and quantum affine algebras.

In addition to the Drinfeld-Jimbo and RTT presentations, these algebras also
admit a third presentation in terms of Drinfeld currents[4].

The equivalence between Drinfeld and RTT presentations has been established for

several classical Lie types. Specifically, Ding and Frenkel[5] proved it for type A,

and Jing, Liu, and Molev[6,7] extended this result to type B, C, D.

[4] V.G. Drinfeld, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR

296 (1) (1987) 13–17

[5] J. Ding, I. B. Frenkel, Isomorphism of two realizations of quantum affine algebra, Comm. Math. Phys.

156 (2) (1993) 277–300

[6] N. Jing, M. Liu, A. Molev, Isomorphism between the R-matrix and Drinfeld presentations of quantum

affine algebra: type C, J. Math. Phys. 61 (3) (2020)

[7] N. Jing, M. Liu, A. Molev, Isomorphism between the R-matrix and Drinfeld presentations of quantum

affine algebra: types B and D, SIGMA. 16 (2020) 043
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Background

Background

Although the Drinfeld presentation does not admit a comultiplication
of finite-sum type, it remains useful in representation-theoretic studies.

Chari and Pressley[8,9] classified the finite-dimensional irreducible
representations of quantum affine algebras for type A using the
evaluation homomorphism

Uq

(
ŝlN

)
→ Uq

(
slN

)
.

In addition, Gow and Molev[10] provided an alternative proof of these
results using the RTT presentation.

[8] V. Chari, A. Pressley, Quantum affine algebras. Comm. Math. Phys. 142 (2) (1991) 261–283

[9] V. Chari, A. Pressley, Small representations of quantum affine algebras. Lett. Math. Phys. 30 (2) (1994)

131–145

[10] L. Gow, A. Molev, Representations of twisted q-Yangians. Selecta Math. (N.S.) 16 (3) (2010) 439–499
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Background

Background

As a super symmetric generalization of quantum groups, quantum superalgebras
were introduced as a powerful framework for constructing solutions to the
Z2-graded quantum Yang-Baxter equation.

The quantum superalgebra associated with the affine Lie superalgebra ĝlm|n,

known as the quantum affine general linear superalgebra Uq

(
ĝlm|n

)
, has been

introduced via RTT presentation in several works: Fan-Hou-Shi[11], Y.-Z.

Zhang[12], H.F. Zhang[13], and Jing-Li-Zhang[14] etc.

[11] H. Fan, B. Hou, K. Shi, Drinfeld constructions of the quantum affine superalgebra Uq( ̂gl(m|n)),

J. Math. Phys. 38 (1997) 411–433

[12] Y.-Z. Zhang, Comments on the Drinfeld realization of the quantum affine superalgebra Uq [gl(m|n)(1)]

and its Hopf algebra structure, J. Phys. A 30 (1997) 8325–8335

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res. Not.

(2016) 1126-1157

[14] N. Jing, Z. Li, J. Zhang, Quantum Berezinian for quantum affine superalgebra Uq(ĝlM|N ), Lett.

Math. Phys. 115 (4) (2025) 83
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Background

Motivation

As known, 01-sequences are used to encode the parities of generators
of (affine) Lie superalgebras in glm|n, where 0 indicates an even index
and 1 indicates an odd index.

Unlike semisimple Lie algebras, classical Lie superalgebras contain odd
roots, which means that not all Borel subalgebras are conjugate to
the standard one [16].

In fact, all the definitions of quantum affine general linear
superalgebra mentioned above are based on the standard 01-sequence

00 · · · 0︸ ︷︷ ︸
m times

11 · · · 1︸ ︷︷ ︸
n times

.

[16] V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8–96
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Background

Motivation

Nevertheless, for the supersymmetric analog of Yangian–namely,
super Yangian, extensive studies involving non-standard 01-sequences
are already available[17,18,19,20,21].

While methods developed for standard 01-sequences are often not
applicable to arbitrary choices of 01-sequences.

It is natural to study finite-dimensional irreducible representations of
the quantum affine general linear superalgebra Uq

(
ĝlm|n,s

)
associated

with arbitrary parity sequences s.

[17] Y.-N. Peng, Parabolic presentations of the super Yangian Y(glM|N ) associated with arbitrary

01-sequences, Comm. Math. Phys. 346 (2016) 313–347

[18] A. Tsymbaliuk, Shuffle algebra realizations of type A super Yangians and quantum affine superalgebras

for all Cartan data, Lett. Math. Phys. 110 8 (2020) 2083–2111

[19] A. Molev, Odd reflections in the Yangian associated with gl(m|n), Lett. Math. Phys. 112 (2022) 15

[20] K. Lu, A note on odd reflections of super Yangian and Bethe ansatz, Lett. Math. Phys. 112 (2022) 29

[21] H. Chang, H. Hu, A note on the center of the super Yangian YM|N (s), J. Algebra 633 (2023) 648–665
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Background

Challenge and Objective

A major challenge lies in constructing the odd reflections for Uq

(
ĝlm|n,s

)
, which

are essential for studying its finite-dimensional irreducible representations.

Since this procedure is not practical for Drinfeld current generators, we use the
RTT presentation—an approach inspired by the work of Gow and Molev[10,22] on
quantum affine algebras and by studies on super Yangians in [19,23].

The main goal of our work is to classify the finite-dimensional irreducible
representations of Uq

(
ĝlm|n,s

)
, which are isomorphic to the irreducible quotients

of tensor products of evaluation representations.

We also conjecture that every finite-dimensional irreducible representation is a

tensor product of evaluation representations.

[10] L. Gow, A. Molev, Representations of twisted q-Yangians. Selecta Math. (N.S.) 16 (3) (2010) 439–499

[19] A. Molev, Odd reflections in the Yangian associated with gl(m|n), Lett. Math. Phys. 112 (2022) 15

[22] A. Molev, V. N. Tolstoy, R.B. Zhang, On irreducibility of tensor products of evaluation modules for the

quantum affine algebra, J. Phys. A Math. Gen. 37 (6) (2004) 2385

[23] R. B. Zhang, The gl(M |N) Super Yangian and Its Finite-Dimensional Representations, Lett. Math.

Phys. 37 (1996) 419–434
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glm|n and their quantization

01-Sequences

Definition 2.1

Consider m,n ∈ Z+ with N = m+ n ⩾ 2. We define S(m|n) as the
set of all 01-sequences s = s1s2 · · · sN that contain exactly m 0s and n 1s;
any sequence s ∈ S(m|n) is called a parity sequence. The parity sequence
s is standard if

s = 00 · · · 0︸ ︷︷ ︸
m times

11 · · · 1︸ ︷︷ ︸
n times

.

Introduce the following two functions on the index set
Is = {1, . . . , N} subject to a parity sequence s: for i ∈ Is,

|i| =

{
0̄, if si = 0,

1̄, otherwise.
di =

{
1, if si = 0,

−1, otherwise.

H. Zhang (SHU) January 20, 2026 10 / 39



glm|n and their quantization

General linear Lie superalgebra

We work over the field of complex numbers C. Fix s ∈ S(m|n), let
e1,s, e2,s, . . . , eN,s be the standard basis of Vs = Cm|n with parities
|ei,s| = |i| for all i ∈ Is. The endomorphism ring EndVs acts on Vs via the
rule

Eij,s(ek,s) = δjkei,s, i, j, k ∈ Is,

where Eij,s with |Eij,s| = |i|+ |j| is the elementary matrix.

Definition 2.2

The EndVs forms a Lie superalgebra endowed with the super-bracket

[Eij,s, Ekl,s] = δjkEil,s − (−1)(|i|+|j|)(|k|+|l|)δilEkj,s

for all i, j, k, l ∈ Is. In this sense, we refer to EndVs as the general linear
Lie superalgebra, denoted by glm|n,s.

H. Zhang (SHU) January 20, 2026 11 / 39



glm|n and their quantization

Weight lattice and root lattice

Let hs be the span of all diagonal matrices Eii,s, and denote hs as the
Cartan subalgebra of gs, consider the basis {ε1,s, . . . , εN,s} of h∗s such
that εi,s(Ejj,s) = δij for all i, j ∈ Is.

We introduce a non-degenerate symmetric bilinear form ( · | · ) on h∗s
defined by (εi,s|εj,s) = diδij .

For i ∈ Is \ {N}, we define the simple roots by αi,s := εi,s − εi+1,s,
then set Ps :=

⊕
i∈Is Zεi,s the weight lattice and

Qs :=
⊕

i∈Is\{N} Zαi,s the root lattice.

The systems of even and odd positive roots are given by

Φ+
0̄,s

:= {εi,s − εj,s | 1 ⩽ i < j ⩽ N and |i|+ |j| = 0̄ },

Φ+
1̄,s

:= {εi,s − εj,s | 1 ⩽ i < j ⩽ N and |i|+ |j| = 1̄ },

respectively.

H. Zhang (SHU) January 20, 2026 12 / 39



glm|n and their quantization

Quantum general linear superalgebra

Let q be not a root of unity and qi = qdi .

Definition 2.5 (Lin-Z 2025)

Given s ∈ S(m|n), the corresponding quantum general linear superalgebra
Uq(glm|n,s) (in its Drinfeld-Jimbo presentation) is an associative superalgebra. Its

generators are x±
i,s (i ∈ Is \N) and k±1

a,s (a ∈ Is), whose parities are defined as

|x±
i,s| = |i|+ |i+ 1| and |k±1

a,s| = 0̄. The defining relations are given as follows,

ka,sk
−1
a,s = k−1

a,ska,s = 1, ka,skb,s = kb,ska,s, (3.1)

ka,sx
±
i,sk

−1
a,s = q±(εa,s|εi,s−εi+1,s)x±

i,s, (3.2)

[x+
i,s, x

−
i,s] = δij

ki,sk
−1
i+1,s − k−1

i,s ki+1,s

qi − q−1
i

, (3.3)

[x±
i,s, x

±
j,s] = 0, if (αi,s|αj,s) = 0, (3.4)[

x±
i,s, [x

±
i,s, x

±
ℓ,s]qi

]
q−1
i

= 0, if (αi,s|αi,s) ̸= 0, ℓ = i± 1, (3.5)[[
[x±

i−1,s, x
±
i,s]qi , x

±
i+1,s

]
qi+1

, x±
i,s

]
= 0, if (αi,s|αi,s) = 0. (3.6)
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glm|n and their quantization

Quantum general linear superalgebra

Remark

We can characterize the classical limit of Uq(glm|n,s) analogously to how the

standard case is treated in [24]. When q → 1, Uq

(
glm|n,s

)
coincides with the

universal enveloping superalgebra U
(
glm|n,s

)
which is obtained by the following

limiting processes:

limq→1 x
+
i,s = Ei,i+1,s, limq→1 x

−
i,s = Ei+1,i,s, limq→1

ka,s − k−1
a,s

qa − q−1
a

= Eaa,,s.

[24] R. B. Zhang, Finite-dimensional irreducible representations of the quantum supergroup Uq(gl(m/n)),

J. Math. Phys. 34(3) (1993) 1236–1254.
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glm|n and their quantization

R-matrix

Definition 2.3 (Lin-Z 2025)

For s ∈ S(m|n), the (quantum) R-matrix R̃q,s of glm|n,s is defined by

R̃q,s =
∑
i,j

q
−δij
i Eii,s ⊗ Ejj,s −

∑
i<j

(qj − q−1
j )Eij,s ⊗ Eji,s ∈ EndV⊗2

s .

which covers the standard case given by H.F. Zhang[13].

Lemma 2.4 (Lin-Z 2025)

The R-matrix R̃q,s is the Z2-graded solution of the following quantum Yang-Baxter
equation

R̃12
q,sR̃13

q,sR̃23
q,s = R̃23

q,sR̃13
q,sR̃12

q,s. (3.7)

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res.

Not. (2016) 1126-1157
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glm|n and their quantization

Quantum general linear superalgebra

Definition 2.5 (Lin-Z 2025)

For s ∈ S(m|n), the quantum general linear superalgebra Uq

(
glm|n,s

)
(in its RTT

presentation) is an associative superalgebra generated by tji,s and t̄ij,s for
1 ⩽ i ⩽ j ⩽ N subject to the defining relations,

tii,st̄ii,s = t̄ii,stii,s = 1, for i ∈ Is, (3.8)

R23
q,sT

1
s T

2
s = T 2

s T
1
s R23

q,s, (3.9)

R23
q,sT̄

1
s T̄

2
s = T̄ 2

s T̄
1
s R23

q,s, (3.10)

R23
q,sT

1
s T̄

2
s = T̄ 2

s T
1
s R23

q,s, (3.11)

where the matrices Ts and T̄s have the respective form

Ts =
∑

1⩽i⩽j⩽N

tji,s ⊗ Eji,s, T̄s =
∑

1⩽i⩽j⩽N

t̄ij,s ⊗ Eij,s.

The parity of generators are given by |tji,s| = |t̄ij,s| = |i|+ |j|.
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glm|n and their quantization

Hopf superalgebra of Uq

(
glm|n,s

)

The superalgebra Uq

(
glm|n,s

)
possesses a Hopf superalgebra structure

endowed with the comultiplication defined as

△R(tji,s) =
∑

i⩽k⩽j

ςik;kjtjk,s ⊗ tki,s, △R(t̄ij,s) =
∑

i⩽k⩽j

ςik;kj t̄ik,s ⊗ t̄kj,s

(3.12)

where ςab;cd = (−1)(|a|+|b|)(|c|+|d|) (a, b, c, d ∈ Is).

H. Zhang (SHU) January 20, 2026 17 / 39



glm|n and their quantization

Hopf superalgebra isomorphism

Proposition 2.6

The assignment

t̄i,i+1,s 7→ (qi − q−1
i )x+

i,ski,s,

ti+1,i,s 7→ −(qi − q−1
i )k−1

i,s x
−
i,s,

t̄aa,s = t−1
aa,s 7→ ka,s

extends to a Hopf superalgebra isomorphism ιs : Uq(glm|n,s) → Uq(glm|n,s).

H. Zhang (SHU) January 20, 2026 18 / 39



glm|n and their quantization

Odd reflection

Fix s ∈ S(m|n) and i ∈ Is \ {N}. Denote s′ = s′1 · · · s′N := σi(s) and

d′i = (−1)s
′
i .

Proposition 2.7: Part I (Lin-Z 2025)

There exists an isomorphism βi,s : Uq

(
glm|n,s

)
→ Uq

(
glm|n,s′

)
given by

tii,s 7→ d′iti+1,i+1,s′ , ti+1,i+1,s 7→ d′i+1tii,s′ , ti+1,i,s 7→ d′id
′
i+1q

−d′
i t̄i,i+1,s′ t̄

−2
ii,s′ ,

tik,s 7→ ς ′i−1,i;i,i+1q
−d′

iti+1,k,s′ − ς ′k,i−1;i,i+1t
−1
ii,s′ti+1,i,s′tik,s′ , if k ⩽ i− 1,

ti+1,k,s 7→ −ς ′i−1,i;i,i+1d
′
i+1tik,s′ , if k ⩽ i− 1,

tli,s 7→ ς ′i,i+1;i,i+2q
d′
itl,i+1,s′ − ς ′i,i+1;i+2,ltii,s′tli,s′ t̄i,i+1,s′ , if l ⩾ i+ 2,

tl,i+1,s 7→ −ς ′i,i+1;i+1,i+2d
′
i+1tli,s′ , if l ⩾ i+ 2,

tlk,s 7→ tlk,s′ , in all remaining cases,

H. Zhang (SHU) January 20, 2026 19 / 39



glm|n and their quantization

Odd reflection

Proposition 2.7: Part II (Lin-Z 2025)

and

t̄ii,s 7→ d′it̄i+1,i+1,s′ , t̄i+1,i+1,s 7→ d′i+1t̄ii,s′ , t̄i,i+1,s 7→ qd
′
it−2

ii,s′ti+1,i,s′ ,

t̄ki,s 7→ ς ′i−1,i;i,i+1d
′
iq

d′
i t̄k,i+1,s′ − ς ′k,i−1;i,i+1d

′
it̄ki,s′ t̄i,i+1,s′ t̄

−1
ii,s′ , if k ⩽ i− 1,

t̄k,i+1,s 7→ −ς ′i−1,i;i,i+1t̄ki,s′ , if k ⩽ i− 1,

t̄il,s 7→ ς ′i,i+1;i,i+2d
′
iq

−d′
i t̄i+1,l,s′ − ς ′i,i+1;i+2,ld

′
iti+1,i,s′ t̄il,s′ t̄ii,s′ , if l ⩾ i+ 2,

t̄i+1,l,s 7→ −ς ′i,i+1;i+1,i+2t̄il,s′ , if l ⩾ i+ 2,

t̄kl,s 7→ t̄kl,s′ , in all remaining cases,

where ς ′ab;cd = (−1)(|a|+|b|)(|c|+|d|) (a, b, c, d ∈ Is′).

If s contains a subsequence sisi+1 = 00 or 11, then βi,s is an automorphism

of Uq

(
glm|n,s

)
; otherwise, βi,s is called an odd reflection.
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glm|n and their quantization

Poincaré-Birkhoff-Witt basis

Using odd reflection, we can deduce the basis of Uq

(
glm|n,s

)
from the

standard case.[24]

Theorem 2.8 (Lin-Z 2025)

For any fixed s ∈ S(m|n), the set of all ordered monomials

−→∏
i∈Is

t
bi,i−1

i,i−1,st
bi,i−2

i,i−2,s · · · t
bi,1
i,1,s ×

−→∏
i∈Is

t̄ biiii,s ×
−→∏
i∈Is

t̄
b1,i
1,i,st̄

b2,i
2,i,s · · · t̄

bi−1,i

i−1,i,s

with the exponents

bij ∈


Z+, if |i|+ |j| = 0̄ and i ̸= j,

{0, 1}, if |i|+ |j| = 1̄,

Z, if i = j

forms a basis for Uq

(
glm|n,s

)
.

[24] H. Lin, Y. Wang, H. Zhang, From quantum loop superalgebras to super Yangians. J. Algebra 650

(2024) 299–334H. Zhang (SHU) January 20, 2026 21 / 39
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Representations of Uq
(
glm|n,s

)

Highest weight representation and Kac module

To simplify the notation, we always write gs = glm|n,s(= gs(0̄)⊕ gs(1̄)) .

Definition 3.1

A representation V is called a highest weight representation over Uq

(
gs
)
if V is

generated by a non-zero vector ζ ∈ V such that

t̄ij,sζ = 0, ∀ 1 ⩽ i < j ⩽ N,

t̄ii,sζ = λiζ, λi ∈ C\{0}.

Set Λ = (λ1, . . . , λN ). The vector ζ and the N -tuple Λ are referred to as the
maximal vector and the highest weight of V , respectively.

Let V̊s(Λ) be the f.d. irreducible representation of Uq

(
gs(0̄)

)
with the highest

weight Λ. Define the Kac module Ks(Λ) by setting

t̄ij,s.V̊s(Λ) = 0.

The Ks(Λ) is f.d. with a unique irreducible quotient Ks(Λ). For any given Λ,
there exists a unique irreducible representation Ks(Λ) with highest weight Λ.

H. Zhang (SHU) January 20, 2026 22 / 39



Representations of Uq
(
glm|n,s

)

Finite-dimentionality condition for standard s

Let V̊s(Λ) be the finite-dimensional irreducible representation of Uq

(
glm|n,s(0̄)

)
with the highest weight Λ. Define the Kac module Ks(Λ) by setting

t̄ij,s.V̊s(Λ) = 0.

The Ks(Λ) is finite-dimensional with a unique irreducible quotient Ks(Λ).
Let Vs(Λ) be a highest weight irreducible representation Uq

(
glm|n,s

)
with highest

weight Λ. If s is standard, R.B. Zhang[25] showed that Vs(Λ) ≃ Ks(Λ). That is to say,

Theorem 3.2

Let s be the standard parity sequence. The representation Vs(Λ) is finite dimensional if
and only if there exist some positive integers ℓi (i ̸= m) such that

ϵiλi

ϵi+1λi+1
= qℓii ,

for some N -tuple ϵ = (ϵ1, . . . , ϵN ) (∀ ϵi ∈ {±1}).

[25] R.B. Zhang, Finite-dimensional irreducible representations of the quantum supergroup Uq(gl(m/n)),

J. Math. Phys. 34 (3) (1993) 1236–1254
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Representations of Uq
(
glm|n,s

)

Transition rules

Let s = s1s2 · · · sN ∈ S(m|n), and let ζ be the maximal vector of Vs(Λ)
with highest weight Λ = (λ1, λ2, . . . , λN ).

Proposition 3.3 (Lin-Z 2025)

Consider i = 1, . . . , N − 1 such that the subsequence sisi+1 = 01 or 10.

(a) If the radio
λi

λi+1
̸= ±1, then the representation Vs(Λ) of Uq

(
glm|n,s

)
is

isomorphic to the representation Vσis

(
Λ′) of Uq

(
glm|n,σis

)
, where

Λ′ = (λ1, . . . , λi−1, q
−1
i λi+1, q

−1
i λi, λi+2, . . . , λN ).

(b) If the radio
λi

λi+1
= ±1, then the representation Vs(Λ) of Uq

(
glm|n,s

)
is

isomorphic to the representation Vσis

(
Λ′) of Uq

(
glm|n,σis

)
, where

Λ′ = (λ1, . . . , λi−1, λi+1, λi, λi+2, . . . , λN ).
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Transition rules

Based on these transition rules, we determine the finite-dimensionality of
Vs(Λ) with Λ = (λ1, . . . , λN ) via the following recursive steps:

(1) If s is standard, use Theor. 3.2; otherwise, go to step (2).

(2) If there exists 1 ⩽ i < N , ℓ < 0 for sisi+1 = 00 or 11 such that

λi

λi+1
= ±qℓi ,

then Vs(Λ) is infinite-dimensional; otherwise, go to step (3).

(3) Apply Prop. 3.3 for sisi+1 = 01 or 10, then set s′ := σis and
Λ := Λ′, and return to step (1).
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Affine R-matrix

Definition 4.1 (Lin-Z 2025)

For s ∈ S(m|n), the (quantum affine) R-matrix of glm|n is defined by

Rq,s(u, v) = Rq,su− PsR−1
q,sPsv with Ps =

∑
i,j∈Is

(−1)|j|Eij,s ⊗ Eji,s,

which covers the standard case given by H.F. Zhang[13].

Lemma 4.2 (Lin-Z 2025)

The R-matrix Rq,s(u, v) is the Z2-graded solution of the following
quantum Yang-Baxter equation

R12
q,s(u, v)R13

q,s(u,w)R23
q,s(v, w) = R23

q,s(v, w)R13
q,s(u,w)R12

q,s(u, v). (5.1)

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res. Not.

(2016) 1126-1157
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Quantum affine general linear superalgebra

Definition 4.3 (Lin-Z 2025)

For s ∈ S(m|n), the quantum affine general linear superalgebra Uq

(
ĝlm|n,s

)
is an

associative superalgebra generated by t
(r)
ij,s, t̄

(r)
ij,s for i, j ∈ Is and r ⩾ 0 subject to the

defining relations,

t
(0)
ij,s = t̄

(0)
ij,s = 0, if 1 ⩽ i < j ⩽ N, (5.2)

t
(0)
ii,st̄

(0)
ii,s = t̄

(0)
ii,st

(0)
ii,s = 1, if i ∈ Is, (5.3)

R23
q,s(u, v)T

1
s (u)T

2
s (v) = T 2

s (v)T
1
s (u)R23

q,s(u, v), (5.4)

R23
q,s(u, v)T̄

1
s (u)T̄

2
s (v) = T̄ 2

s (v)T̄
1
s (u)R23

q,s(u, v), (5.5)

R23
q,s(u, v)T

1
s (u)T̄

2
s (v) = T̄ 2

s (v)T
1
s (u)R23

q,s(u, v). (5.6)

where the parities
∣∣t(r)ij,s

∣∣ = ∣∣t̄(r)ij,s

∣∣ = |i|+ |j| and

Ts(u) =
∑

i,j∈Is

tij,s(u)⊗ Eij,s with tij,s(u) =
∑
r⩾0

t
(r)
ij,su

−r,

T̄s(u) =
∑

i,j∈Is

t̄ij,s(u)⊗ Eij,s with t̄ij,s(u) =
∑
r⩾0

t̄
(r)
ij,su

r.

H. Zhang (SHU) January 20, 2026 27 / 39



Uq
(
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Poincaré-Birkhoff-Witt basis

Theorem 4.4 (Lin-Z 2025)

Let Bs be the set of all ordered monomials

−→∏
1−N⩽k⩽1

−→∏
1−k⩽i⩽N

{(
t
(0)
i,i+k,s

)bi,i+k,0
(
t
(1)
i,i+k,s

)bi,i+k,1
(
t̄
(1)
i,i+k,s

)b̄i,i+k,1

· · ·
}

×
−→∏

1⩽i⩽N

{(
t
(0)
ii,s

)bi,i,0
(
t̄
(0)
ii,s

)b̄i,i,0
(
t
(1)
ii,s

)bi,i,0
(
t̄
(1)
ii,s

)b̄i,i,1
· · ·

}

×
−→∏

1⩽k⩽N−1

−→∏
1⩽i⩽k

{(
t̄
(0)
i,i+k,s

)b̄i,i+k,0
(
t
(1)
i,i+k,s

)bi,i+k,1
(
t̄
(1)
i,i+k,s

)b̄i,i+k,1

· · ·
}

with the exponents

bi,j,r, b̄i,j,r ∈ Z+, if |i|+ |j| = 0̄,

bi,j,r, b̄i,j,r ∈ {0, 1}, if |i|+ |j| = 1̄,

bi,i,0 × b̄i,i,0 = 0 for i ∈ Is.

Then the monomial set Bs forms an ordered basis of Uq

(
ĝlm|n,s

)
.
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Highest weight representation

Definition 5.1

A representation V is called a highest weight representation over Uq

(
ĝlm|n,s

)
if V is

generated by a non-zero vector ζ ∈ V such that

tij,s(u)ζ = t̄ij,s(u)ζ = 0, for 1 ⩽ i < j ⩽ N,

tii,s(u)ζ = λi(u)ζ, t̄ii,s(u)ζ = λ̄i(u)ζ, for i ∈ Is,

where λi(u), λ̄i(u) are the formal power series given by

λi(u) =

∞∑
r=0

λ
(r)
i u−r, λ̄i(u) =

∞∑
r=0

λ̄
(r)
i ur,

for all coefficients λ
(r)
i , λ̄

(r)
i ∈ C and λ

(0)
i λ̄

(0)
i = 1 (i ∈ Is). Set the N -tuples

λ(u) = (λ1(u), . . . , λN (u)), λ̄(u) = (λ̄1(u), . . . , λ̄N (u)).

The vector ζ and the pair (λ(u); λ̄(u)) are referred to as the maximal vector and the
highest weights of V , respectively.
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Highest weight representation

Proposition 5.2 (Lin-Z 2025)

Every finite-dimensional irreducible representation for Uq

(
ĝlm|n,s

)
is a highest

weight representation.

For any pair (λ(u); λ̄(u)) with λ
(0)
i λ̄

(0)
i = 1 (i ∈ Is), there exists a

non-trivial Verma module M(λ(u); λ̄(u)) which is defined as a quotient of

Uq

(
ĝlm|n,s

)
by the left ideal generated by all coefficients of

tij(u), t̄ij(u), i < j, i, j ∈ Is

tii(u)− λi(u), t̄ii(u)− λ̄i(u) i ∈ Is.

Then M(λ(u); λ̄(u)) is a representation of Uq

(
ĝlm|n,s

)
with highest weight

(λ(u); λ̄(u)). It is indecomposable and has a unique irreducible quotient

V (λ(u); λ̄(u)). Moreover, for given weights λ(u) and λ̄(u), up to isomorphism,

there is a unique highest weight irreducible representation V (λ(u); λ̄(u)).
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Evaluation homomorphism

Proposition 5.3 (Lin-Z 2025)

For any a ∈ C \ {0} and s ∈ S(m|n), there exists a surjective
homomorphism of superalgebras

eva,s : Uq

(
ĝlm|n,s

)
→ Uq

(
glm|n,s

)
such that

Ts(u) 7→ Ts − T̄sa
−1u−1, T̄s(u) 7→ T̄s − Tsau.

Proposition 5.3 is a generalization of Proposition 3.3(2) in[13] to
arbitrary parity sequences. The map eva,s serves as such an evaluation

homomorphism for Uq

(
ĝlm|n,s

)
.

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res.

Not. (2016) 1126-1157
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Evaluation representation

Let Vs(M) be an irreducible representation for Uq

(
glm|n,s

)
with highest weight

M = (µ1, . . . , µN ), for each µi ∈ C \ {0}.

The evaluation representation Va,s(M) of Uq

(
ĝlm|n,s

)
is defined as the pullback of

Vs(M) via eva,s. Consequently, the representation Va,s(M) is the irreducible highest

weight representation of Uq

(
ĝlm|n,s

)
with highest weights (µ(u); µ̄(u)) given by

µi(u) = µ−1
i − µia

−1u−1,

µ(u) = (µ1(u), µ2(u), . . . , µN (u)),

µ̄i(u) = µi − µ−1
i au,

µ̄(u) = (µ̄1(u), µ̄2(u), . . . , µ̄N (u)).

If Vs(M) is finite-dimensional, there exists a series of integers ℓij ⩾ 0

(|i|+ |j| = 0̄) such that
λi

λj
= ±q

ℓij+#(i,j)

i by Corollary 3.3. It follows that

µi(u)

µj(u)
= q

ℓij+#(i,j)

i

Pij(q
−2
i u)

Pij(u)
=

µ̄i(u)

µ̄j(u)
,

where

Pij(u) =
(
1− µ−2

j au
) (

1− q−2
i µ−2

j au
)
· · ·

(
1− q

−2(ℓij+#(i,j)−1)

i µ−2
j au

)
.
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Finite-dimentionality condition for standard s

Theorem 5.4 (Lin-Z 2025)

Let s be the standard parity sequence. Consider the N -tuples

λ(u) = (λ1(u), λ2(u), . . . , λN (u)), λ̄(u) = (λ̄1(u), λ̄2(u), . . . , λ̄N (u))

for each series λi(u), λ̄i(u) satisfying λ
(0)
i λ̄

(0)
i = 1 (i ∈ Is). The irreducible highest

weight representation Vs(λ(u); λ̄(u)) of Uq

(
ĝlm|n,s

)
is finite-dimensional if and only if

there exist a series of polynomials Pi(u) ∈ 1 + uC[u] (i ̸= m,N), and Qm(u), Q̃m(u)
with the products of the constant term and the leading coefficient equal to 1, such that

ϵiλi(u)

ϵi+1λi+1(u)
= q

degPi(u)
i · Pi(q

−2
i u)

Pi(u)
=

ϵiλ̄i(u)

ϵi+1λ̄i+1(u)

for some ϵi, ϵi+1 ∈ {±1}, and

λm(u)

λm+1(u)
=

Qm(u)

Q̃m(u)
=

λ̄m(u)

λ̄m+1(u)
.
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General cases

Let Vs(M(k)) (k = 1, . . . , l) be the finite-dimensional representation of

Uq

(
glm|n,s

)
with highest weight M(k) = (µ

(k)
1 , . . . , µ

(k)
N ). Regard the tensor

product

Va1,s(M(1))⊗ Va2,s(M(2))⊗ Val,s(M(l)), ak ̸= 0, (6.1)

as a representation of Uq

(
ĝlm|n,s

)
.

Conjecture 5.5 (Lin-Z 2025)

Every finite-dimensional irreducible representation of Uq

(
ĝlm|n,s

)
is a tensor

product of evaluation representations.
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General cases

Now we only checked it for the special case (m,n) = (1, 1).

Theorem 5.6 (Lin-Z 2025)

The representation (6.1) of Uq

(
ĝl1|1,s

)
is irreducible if condition

ai
aj

̸=
µ2
i,2

µ2
j,1

and
µ2
i,1

µ2
j,2

for each pair (i, j) (6.2)

holds. Moreover, every finite-dimensional irreducible representation is isomorphic
to a tensor product of evaluation representations with (6.1) satisfying (6.2).
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Transition rules

Consider i ∈ Is such that sisi+1 = 01 or 10. Let λi(u), λi+1(u) be the formal
series

λi(u) =
(
(λ

(1)
i )−1 − λ

(1)
i u−1

)
· · ·

(
(λ

(l)
i )−1 − λ

(l)
i u−1

)
,

λ̄i(u) =
(
λ
(1)
i − (λ

(1)
i )−1u

)
· · ·

(
λ
(l)
i − (λ

(l)
i )−1u

)
,

such that for a certain k = 0, . . . , l,

λ
(r)
i /λ

(s)
i+1 ̸= ±1 for all r, s = 1, . . . , k,

λ
(r)
i /λ

(s)
i+1 ∈ {±1} for all r = k + 1, . . . , l.

Proposition 5.7: Part I (Lin-Z 2025)

If the representation Vs(λ(u); λ̄(u)) of Uq

(
ĝlm|n,s

)
is isomorphic to the irreducible

quotient of the tensor product (6.1), then Vσi(s)(λ(u)
′; λ̄(u)′) of Uq

(
ĝlm|n,σi(s)

)
is

finite-dimensional. Here

λ′(u) = (λ′
1(u), . . . , λ

′
N (u)), λ̄′(u) = (λ̄′

1(u), . . . , λ̄
′
N (u)),
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ĝlm|n,s

)

Transition rules

Proposition 5.7: Part II (Lin-Z 2025)

with

λ′
i(u) =

(
qi(λ

(1)
i+1)

−1 − q−1
i λ

(1)
i+1u

−1
)
· · ·

(
qi(λ

(k)
i+1)

−1 − q−1
i λ

(k)
i+1u

−1
)

(
(λ

(k+1)
i+1 )−1 − λ

(k+1)
i+1 u−1

)
· · ·

(
(λ

(l)
i+1)

−1 − λ
(l)
i+1u

−1
)
,

λ′
i+1(u) =

(
qi(λ

(1)
i )−1 − q−1

i λ
(1)
i u−1

)
· · ·

(
qi(λ

(k)
i )−1 − q−1

i λ
(k)
i u−1

)
(
(λ

(k+1)
i )−1 − λ

(k+1)
i u−1

)
· · ·

(
(λ

(l)
i )−1 − λ

(l)
i u−1

)
,

λ̄′
i(u) =

(
q−1
i λ

(1)
i+1 − qi(λ

(1)
i+1)

−1u
)
· · ·

(
q−1
i λ

(k)
i+1 − qi(λ

(k)
i+1)

−1u
)

(
λ
(k+1)
i+1 − (λ

(k+1)
i+1 )−1u

)
· · ·

(
λ
(l)
i+1 − (λ

(l)
i+1)

−1u
)
,

λ̄′
i+1(u) =

(
q−1
i λ

(1)
i − qi(λ

(1)
i )−1u

)
· · ·

(
q−1
i λ

(k)
i − qi(λ

(k)
i )−1u

)
(
λ
(k+1)
i − (λ

(k+1)
i )−1u

)
· · ·

(
λ
(l)
i − (λ

(l)
i )−1u

)
,

λ′
p(u) = λp(u), λ̄′

p(u) = λ̄p(u), p ̸= i, i+ 1.
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Transition rules

Prop. 5.7 allows us to determine the finite-dimensionality condition
for Vs(λ(u); λ̄(u)), which is isomorphic to the irreducible quotient of a
tensor product of evaluation representations.

(1) If s is standard, use Theor. 5.4; otherwise, go to step (2).

(2) If there do not exist some polynomial Pi(u) such that one of the
identities

λi(u)

λi+1(u)
= ±q

degPi(u)
i ·

Pi(q
−2
i u)

Pi(u)
=

λ̄i(u)

λ̄i+1(u)

is not satisfied for sisi+1 = 00 or 11, then Vs(λ(u); λ̄(u)) is
infinite-dimensional; otherwise, go to step (3).

(3) Apply Prop. 5.7 for sisi+1 = 01 or 10, then set s′ := σis and
(λ(u); λ̄(u)) := (λ′(u); λ̄′(u)), and return to step (1).
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Thank for your attention!
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