

Finite-dimensional irreducible representations of quantum affine superalgebras for arbitrary parities

Honglian Zhang

Department of Mathematics
Shanghai University

Joint with Hongda Lin
International Conference on Hopf Algebras and Tensor Categories

January 20, 2026

Contents

- 1 Background
- 2 $\mathfrak{gl}_{m|n}$ and their quantization
- 3 Representations of $U_q(\mathfrak{gl}_{m|n,s})$
- 4 $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ and PBW basis
- 5 Representations of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$

Contents

- 1 Background
- 2 $\mathfrak{gl}_{m|n}$ and their quantization
- 3 Representations of $U_q(\mathfrak{gl}_{m|n,s})$
- 4 $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ and PBW basis
- 5 Representations of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$

Background

- Quantum groups were independently introduced by Drinfeld^[1] and Jimbo^[2] around 1985, commonly known as *Drinfeld-Jimbo presentation*.
- In Drinfeld-Jimbo framework, a quantum group is a q -deformation $U_q(\mathfrak{a})$ of the universal enveloping algebra $U(\mathfrak{a})$ of a Kac-Moody algebra \mathfrak{a} .

[1] V.G. Drinfeld, *Hopf algebras and the quantum Yang-Baxter equation*, Dokl. Akad. Nauk SSSR **283** (5) (1985) 1060–1064

[2] M. Jimbo, *A q -difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation*, Lett. Math. Phys. **10** (1985) 63–69

Background

- Another construction^[3] of the quantized enveloping algebra $U_q(\mathfrak{a})$ describes it as an associative algebra whose defining relations are expressed in terms of a R-matrix R .
- This approach, known as the *RTT presentation*, naturally equips $U_q(\mathfrak{a})$ with the structure of a Hopf algebra. This presentation carries a natural comultiplication, which is useful for studying tensor products of representations.
- The matrix R here is a solution of the following quantum Yang-Baxter equation:

$$R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12},$$

where $R^{12} := R \otimes 1$, etc.

[3] N. Reshetikhin, L. Takhtadzhyan, L. Faddeev, *Quantization of Lie groups and Lie algebras*, Leningrad Math. J. 1 (1990) 193–226

Background

- Among the major families of quantized enveloping algebras, two are especially important: Yangians and quantum affine algebras.
- In addition to the Drinfeld-Jimbo and RTT presentations, these algebras also admit a third presentation in terms of Drinfeld currents^[4].
- The equivalence between Drinfeld and RTT presentations has been established for several classical Lie types. Specifically, Ding and Frenkel^[5] proved it for type A, and Jing, Liu, and Molev^[6,7] extended this result to type B, C, D.

[4] V.G. Drinfeld, *A new realization of Yangians and of quantum affine algebras*, Dokl. Akad. Nauk SSSR 296 (1) (1987) 13–17

[5] J. Ding, I. B. Frenkel, *Isomorphism of two realizations of quantum affine algebra*, Comm. Math. Phys. 156 (2) (1993) 277–300

[6] N. Jing, M. Liu, A. Molev, *Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: type C*, J. Math. Phys. 61 (3) (2020)

[7] N. Jing, M. Liu, A. Molev, *Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: types B and D*, SIGMA. 16 (2020) 043

Background

- Although the Drinfeld presentation does not admit a comultiplication of finite-sum type, it remains useful in representation-theoretic studies.
- Chari and Pressley^[8,9] classified the finite-dimensional irreducible representations of quantum affine algebras for type A using the evaluation homomorphism

$$U_q(\widehat{\mathfrak{sl}}_N) \rightarrow U_q(\mathfrak{sl}_N).$$

- In addition, Gow and Molev^[10] provided an alternative proof of these results using the RTT presentation.

[8] V. Chari, A. Pressley, *Quantum affine algebras*. Comm. Math. Phys. **142** (2) (1991) 261–283

[9] V. Chari, A. Pressley, *Small representations of quantum affine algebras*. Lett. Math. Phys. **30** (2) (1994) 131–145

[10] L. Gow, A. Molev, *Representations of twisted q -Yangians*. Selecta Math. (N.S.) **16** (3) (2010) 439–499

Background

- As a super symmetric generalization of quantum groups, quantum superalgebras were introduced as a powerful framework for constructing solutions to the \mathbb{Z}_2 -graded quantum Yang-Baxter equation.
- The quantum superalgebra associated with the affine Lie superalgebra $\widehat{\mathfrak{gl}}_{m|n}$, known as the quantum affine general linear superalgebra $U_q(\widehat{\mathfrak{gl}}_{m|n})$, has been introduced via RTT presentation in several works: Fan-Hou-Shi^[11], Y.-Z. Zhang^[12], H.F. Zhang^[13], and Jing-Li-Zhang^[14] etc.

[11] H. Fan, B. Hou, K. Shi, Drinfeld constructions of the quantum affine superalgebra $U_q(\widehat{\mathfrak{gl}(m|n)})$, J. Math. Phys. **38** (1997) 411–433

[12] Y.-Z. Zhang, Comments on the Drinfeld realization of the quantum affine superalgebra $U_q[\mathfrak{gl}(m|n)^{(1)}]$ and its Hopf algebra structure, J. Phys. A **30** (1997) 8325–8335

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res. Not. (2016) 1126–1157

[14] N. Jing, Z. Li, J. Zhang, Quantum Berezinian for quantum affine superalgebra $U_q(\widehat{\mathfrak{gl}}_{M|N})$, Lett. Math. Phys. **115** (4) (2025) 83

Motivation

- As known, 01-sequences are used to encode the parities of generators of (affine) Lie superalgebras in $\mathfrak{gl}_{m|n}$, where 0 indicates an even index and 1 indicates an odd index.
- Unlike semisimple Lie algebras, classical Lie superalgebras contain odd roots, which means that not all Borel subalgebras are conjugate to the standard one [16].
- In fact, all the definitions of quantum affine general linear superalgebra mentioned above are based on the standard 01-sequence

$$\underbrace{00 \cdots 0}_{m \text{ times}} \underbrace{11 \cdots 1}_{n \text{ times}}.$$

[16] V.G. Kac, *Lie superalgebras*, Adv. Math. 26 (1977) 8–96

Motivation

- Nevertheless, for the supersymmetric analog of Yangian—namely, super Yangian, extensive studies involving non-standard 01-sequences are already available^[17,18,19,20,21].
- While methods developed for standard 01-sequences are often not applicable to arbitrary choices of 01-sequences.
- It is natural to study finite-dimensional irreducible representations of the quantum affine general linear superalgebra $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ associated with arbitrary parity sequences s .

[17] Y.-N. Peng, *Parabolic presentations of the super Yangian $Y(\mathfrak{gl}_{M|N})$ associated with arbitrary 01-sequences*, Comm. Math. Phys. **346** (2016) 313–347

[18] A. Tsymbaliuk, *Shuffle algebra realizations of type A super Yangians and quantum affine superalgebras for all Cartan data*, Lett. Math. Phys. **110** 8 (2020) 2083–2111

[19] A. Molev, *Odd reflections in the Yangian associated with $\mathfrak{gl}(m|n)$* , Lett. Math. Phys. **112** (2022) 15

[20] K. Lu, *A note on odd reflections of super Yangian and Bethe ansatz*, Lett. Math. Phys. **112** (2022) 29

[21] H. Chang, H. Hu, *A note on the center of the super Yangian $Y_{M|N}(s)$* , J. Algebra **633** (2023) 648–665

Challenge and Objective

- A major challenge lies in constructing the odd reflections for $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$, which are essential for studying its finite-dimensional irreducible representations.
- Since this procedure is not practical for Drinfeld current generators, we use the RTT presentation—an approach inspired by the work of Gow and Molev^[10,22] on quantum affine algebras and by studies on super Yangians in ^[19,23].
- The main goal of our work is to classify the finite-dimensional irreducible representations of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$, which are isomorphic to the irreducible quotients of tensor products of evaluation representations.
- We also conjecture that every finite-dimensional irreducible representation is a tensor product of evaluation representations.

[10] L. Gow, A. Molev, *Representations of twisted q -Yangians*. Selecta Math. (N.S.) **16** (3) (2010) 439–499

[19] A. Molev, *Odd reflections in the Yangian associated with $\mathfrak{gl}(m|n)$* , Lett. Math. Phys. **112** (2022) 15

[22] A. Molev, V. N. Tolstoy, R.B. Zhang, *On irreducibility of tensor products of evaluation modules for the quantum affine algebra*, J. Phys. A Math. Gen. **37** (6) (2004) 2385

[23] R. B. Zhang, *The $gl(M|N)$ Super Yangian and Its Finite-Dimensional Representations*, Lett. Math. Phys. **37** (1996) 419–434

Contents

- 1 Background
- 2 $\mathfrak{gl}_{m|n}$ and their quantization
- 3 Representations of $U_q(\mathfrak{gl}_{m|n,s})$
- 4 $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ and PBW basis
- 5 Representations of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$

01-Sequences

Definition 2.1

Consider $m, n \in \mathbb{Z}_+$ with $N = m + n \geq 2$. We define $\mathcal{S}(m|n)$ as the set of all 01-sequences $\mathbf{s} = s_1 s_2 \cdots s_N$ that contain exactly m 0s and n 1s; any sequence $\mathbf{s} \in \mathcal{S}(m|n)$ is called a *parity sequence*. The parity sequence \mathbf{s} is *standard* if

$$\mathbf{s} = \underbrace{00 \cdots 0}_{m \text{ times}} \underbrace{11 \cdots 1}_{n \text{ times}}.$$

Introduce the following two functions on the index set $I_{\mathbf{s}} = \{1, \dots, N\}$ subject to a parity sequence \mathbf{s} : for $i \in I_{\mathbf{s}}$,

$$|i| = \begin{cases} \bar{0}, & \text{if } s_i = 0, \\ \bar{1}, & \text{otherwise.} \end{cases} \quad d_i = \begin{cases} 1, & \text{if } s_i = 0, \\ -1, & \text{otherwise.} \end{cases}$$

General linear Lie superalgebra

We work over the field of complex numbers \mathbb{C} . Fix $\mathbf{s} \in \mathcal{S}(m|n)$, let $e_{1,\mathbf{s}}, e_{2,\mathbf{s}}, \dots, e_{N,\mathbf{s}}$ be the standard basis of $\mathcal{V}_{\mathbf{s}} = \mathbb{C}^{m|n}$ with parities $|e_{i,\mathbf{s}}| = |i|$ for all $i \in I_{\mathbf{s}}$. The endomorphism ring $\text{End } \mathcal{V}_{\mathbf{s}}$ acts on $\mathcal{V}_{\mathbf{s}}$ via the rule

$$E_{ij,\mathbf{s}}(e_{k,\mathbf{s}}) = \delta_{jk} e_{i,\mathbf{s}}, \quad i, j, k \in I_{\mathbf{s}},$$

where $E_{ij,\mathbf{s}}$ with $|E_{ij,\mathbf{s}}| = |i| + |j|$ is the elementary matrix.

Definition 2.2

The $\text{End } \mathcal{V}_{\mathbf{s}}$ forms a Lie superalgebra endowed with the super-bracket

$$[E_{ij,\mathbf{s}}, E_{kl,\mathbf{s}}] = \delta_{jk} E_{il,\mathbf{s}} - (-1)^{(|i|+|j|)(|k|+|l|)} \delta_{il} E_{kj,\mathbf{s}}$$

for all $i, j, k, l \in I_{\mathbf{s}}$. In this sense, we refer to $\text{End } \mathcal{V}_{\mathbf{s}}$ as the *general linear Lie superalgebra*, denoted by $\mathfrak{gl}_{m|n,\mathbf{s}}$.

Weight lattice and root lattice

- Let \mathfrak{h}_s be the span of all diagonal matrices $E_{ii,s}$, and denote \mathfrak{h}_s as the *Cartan subalgebra* of \mathfrak{g}_s , consider the basis $\{\varepsilon_{1,s}, \dots, \varepsilon_{N,s}\}$ of \mathfrak{h}_s^* such that $\varepsilon_{i,s}(E_{jj,s}) = \delta_{ij}$ for all $i, j \in I_s$.
- We introduce a non-degenerate symmetric bilinear form $(\cdot | \cdot)$ on \mathfrak{h}_s^* defined by $(\varepsilon_{i,s} | \varepsilon_{j,s}) = d_i \delta_{ij}$.
- For $i \in I_s \setminus \{N\}$, we define the simple roots by $\alpha_{i,s} := \varepsilon_{i,s} - \varepsilon_{i+1,s}$, then set $\mathbf{P}_s := \bigoplus_{i \in I_s} \mathbb{Z} \varepsilon_{i,s}$ the *weight lattice* and $\mathbf{Q}_s := \bigoplus_{i \in I_s \setminus \{N\}} \mathbb{Z} \alpha_{i,s}$ the *root lattice*.
- The systems of even and odd positive roots are given by

$$\Phi_{\bar{0},s}^+ := \{\varepsilon_{i,s} - \varepsilon_{j,s} \mid 1 \leq i < j \leq N \text{ and } |i| + |j| = \bar{0}\},$$
$$\Phi_{\bar{1},s}^+ := \{\varepsilon_{i,s} - \varepsilon_{j,s} \mid 1 \leq i < j \leq N \text{ and } |i| + |j| = \bar{1}\},$$

respectively.

Quantum general linear superalgebra

Let q be not a root of unity and $q_i = q^{d_i}$.

Definition 2.5 (Lin-Z 2025)

Given $\mathbf{s} \in \mathcal{S}(m|n)$, the corresponding quantum general linear superalgebra $\mathcal{U}_q(\mathfrak{gl}_{m|n,\mathbf{s}})$ (in its Drinfeld-Jimbo presentation) is an associative superalgebra. Its generators are $x_{i,\mathbf{s}}^{\pm}$ ($i \in I_{\mathbf{s}} \setminus N$) and $k_{a,\mathbf{s}}^{\pm 1}$ ($a \in I_{\mathbf{s}}$), whose parities are defined as $|x_{i,\mathbf{s}}^{\pm}| = |i| + |i + 1|$ and $|k_{a,\mathbf{s}}^{\pm 1}| = \bar{0}$. The defining relations are given as follows,

$$k_{a,\mathbf{s}} k_{a,\mathbf{s}}^{-1} = k_{a,\mathbf{s}}^{-1} k_{a,\mathbf{s}} = 1, \quad k_{a,\mathbf{s}} k_{b,\mathbf{s}} = k_{b,\mathbf{s}} k_{a,\mathbf{s}}, \quad (3.1)$$

$$k_{a,\mathbf{s}} x_{i,\mathbf{s}}^{\pm} k_{a,\mathbf{s}}^{-1} = q^{\pm(\varepsilon_{a,\mathbf{s}}|\varepsilon_{i,\mathbf{s}} - \varepsilon_{i+1,\mathbf{s}})} x_{i,\mathbf{s}}^{\pm}, \quad (3.2)$$

$$[x_{i,\mathbf{s}}^+, x_{i,\mathbf{s}}^-] = \delta_{ij} \frac{k_{i,\mathbf{s}} k_{i+1,\mathbf{s}}^{-1} - k_{i,\mathbf{s}}^{-1} k_{i+1,\mathbf{s}}}{q_i - q_i^{-1}}, \quad (3.3)$$

$$[x_{i,\mathbf{s}}^{\pm}, x_{j,\mathbf{s}}^{\pm}] = 0, \quad \text{if } (\alpha_{i,\mathbf{s}}|\alpha_{j,\mathbf{s}}) = 0, \quad (3.4)$$

$$[x_{i,\mathbf{s}}^{\pm}, [x_{i,\mathbf{s}}^{\pm}, x_{\ell,\mathbf{s}}^{\pm}]_{q_i}]_{q_i^{-1}} = 0, \quad \text{if } (\alpha_{i,\mathbf{s}}|\alpha_{i,\mathbf{s}}) \neq 0, \quad \ell = i \pm 1, \quad (3.5)$$

$$[[x_{i-1,\mathbf{s}}^{\pm}, x_{i,\mathbf{s}}^{\pm}]_{q_i}, x_{i+1,\mathbf{s}}^{\pm}]_{q_{i+1}}, x_{i,\mathbf{s}}^{\pm}] = 0, \quad \text{if } (\alpha_{i,\mathbf{s}}|\alpha_{i,\mathbf{s}}) = 0. \quad (3.6)$$

Quantum general linear superalgebra

Remark

We can characterize the *classical limit* of $\mathcal{U}_q(\mathfrak{gl}_{m|n,s})$ analogously to how the standard case is treated in [24]. When $q \rightarrow 1$, $\mathcal{U}_q(\mathfrak{gl}_{m|n,s})$ coincides with the universal enveloping superalgebra $\mathcal{U}(\mathfrak{gl}_{m|n,s})$ which is obtained by the following limiting processes:

$$\lim_{q \rightarrow 1} x_{i,s}^+ = E_{i,i+1,s}, \quad \lim_{q \rightarrow 1} x_{i,s}^- = E_{i+1,i,s}, \quad \lim_{q \rightarrow 1} \frac{k_{a,s} - k_{a,s}^{-1}}{q_a - q_a^{-1}} = E_{aa,,s}.$$

[24] R. B. Zhang, *Finite-dimensional irreducible representations of the quantum supergroup $\mathbf{U}_q(gl(m/n))$* , J. Math. Phys. 34(3) (1993) 1236–1254.

R-matrix

Definition 2.3 (Lin-Z 2025)

For $\mathbf{s} \in \mathcal{S}(m|n)$, the (quantum) R-matrix $\tilde{\mathcal{R}}_{q,\mathbf{s}}$ of $\mathfrak{gl}_{m|n,\mathbf{s}}$ is defined by

$$\tilde{\mathcal{R}}_{q,\mathbf{s}} = \sum_{i,j} q_i^{-\delta_{ij}} E_{ii,\mathbf{s}} \otimes E_{jj,\mathbf{s}} - \sum_{i < j} (q_j - q_j^{-1}) E_{ij,\mathbf{s}} \otimes E_{ji,\mathbf{s}} \in \text{End } \mathcal{V}_{\mathbf{s}}^{\otimes 2}.$$

which covers the standard case given by H.F. Zhang^[13].

Lemma 2.4 (Lin-Z 2025)

The R-matrix $\tilde{\mathcal{R}}_{q,\mathbf{s}}$ is the \mathbb{Z}_2 -graded solution of the following quantum Yang-Baxter equation

$$\tilde{\mathcal{R}}_{q,\mathbf{s}}^{12} \tilde{\mathcal{R}}_{q,\mathbf{s}}^{13} \tilde{\mathcal{R}}_{q,\mathbf{s}}^{23} = \tilde{\mathcal{R}}_{q,\mathbf{s}}^{23} \tilde{\mathcal{R}}_{q,\mathbf{s}}^{13} \tilde{\mathcal{R}}_{q,\mathbf{s}}^{12}. \quad (3.7)$$

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res.

Not. (2016) 1126-1157

Quantum general linear superalgebra

Definition 2.5 (Lin-Z 2025)

For $\mathbf{s} \in \mathcal{S}(m|n)$, the quantum general linear superalgebra $U_q(\mathfrak{gl}_{m|n,\mathbf{s}})$ (in its RTT presentation) is an associative superalgebra generated by $t_{ji,\mathbf{s}}$ and $\bar{t}_{ij,\mathbf{s}}$ for $1 \leq i \leq j \leq N$ subject to the defining relations,

$$t_{ii,\mathbf{s}} \bar{t}_{ii,\mathbf{s}} = \bar{t}_{ii,\mathbf{s}} t_{ii,\mathbf{s}} = 1, \quad \text{for } i \in I_{\mathbf{s}}, \quad (3.8)$$

$$\mathcal{R}_{q,\mathbf{s}}^{23} T_{\mathbf{s}}^1 T_{\mathbf{s}}^2 = T_{\mathbf{s}}^2 T_{\mathbf{s}}^1 \mathcal{R}_{q,\mathbf{s}}^{23}, \quad (3.9)$$

$$\mathcal{R}_{q,\mathbf{s}}^{23} \bar{T}_{\mathbf{s}}^1 \bar{T}_{\mathbf{s}}^2 = \bar{T}_{\mathbf{s}}^2 \bar{T}_{\mathbf{s}}^1 \mathcal{R}_{q,\mathbf{s}}^{23}, \quad (3.10)$$

$$\mathcal{R}_{q,\mathbf{s}}^{23} T_{\mathbf{s}}^1 \bar{T}_{\mathbf{s}}^2 = \bar{T}_{\mathbf{s}}^2 T_{\mathbf{s}}^1 \mathcal{R}_{q,\mathbf{s}}^{23}, \quad (3.11)$$

where the matrices $T_{\mathbf{s}}$ and $\bar{T}_{\mathbf{s}}$ have the respective form

$$T_{\mathbf{s}} = \sum_{1 \leq i \leq j \leq N} t_{ji,\mathbf{s}} \otimes E_{ji,\mathbf{s}}, \quad \bar{T}_{\mathbf{s}} = \sum_{1 \leq i \leq j \leq N} \bar{t}_{ij,\mathbf{s}} \otimes E_{ij,\mathbf{s}}.$$

The parity of generators are given by $|t_{ji,\mathbf{s}}| = |\bar{t}_{ij,\mathbf{s}}| = |i| + |j|$.

Hopf superalgebra of $U_q(\mathfrak{gl}_{m|n,s})$

The superalgebra $U_q(\mathfrak{gl}_{m|n,s})$ possesses a Hopf superalgebra structure endowed with the comultiplication defined as

$$\Delta^{\mathbf{R}}(t_{ji,s}) = \sum_{i \leq k \leq j} \varsigma_{ik;kj} t_{jk,s} \otimes t_{ki,s}, \quad \Delta^{\mathbf{R}}(\bar{t}_{ij,s}) = \sum_{i \leq k \leq j} \varsigma_{ik;kj} \bar{t}_{ik,s} \otimes \bar{t}_{kj,s} \quad (3.12)$$

where $\varsigma_{ab;cd} = (-1)^{(|a|+|b|)(|c|+|d|)}$ ($a, b, c, d \in I_s$).

Hopf superalgebra isomorphism

Proposition 2.6

The assignment

$$\begin{aligned}\bar{t}_{i,i+1,\mathbf{s}} &\mapsto (q_i - q_i^{-1}) x_{i,\mathbf{s}}^+ k_{i,\mathbf{s}}, \\ t_{i+1,i,\mathbf{s}} &\mapsto -(q_i - q_i^{-1}) k_{i,\mathbf{s}}^{-1} x_{i,\mathbf{s}}^-, \\ \bar{t}_{aa,\mathbf{s}} = t_{aa,\mathbf{s}}^{-1} &\mapsto k_{a,\mathbf{s}}\end{aligned}$$

extends to a Hopf superalgebra isomorphism $\iota_{\mathbf{s}} : U_q(\mathfrak{gl}_{m|n,\mathbf{s}}) \rightarrow \mathcal{U}_q(\mathfrak{gl}_{m|n,\mathbf{s}})$.

Odd reflection

Fix $\mathbf{s} \in \mathcal{S}(m|n)$ and $i \in I_{\mathbf{s}} \setminus \{N\}$. Denote $\mathbf{s}' = s'_1 \cdots s'_N := \sigma_i(\mathbf{s})$ and $d'_i = (-1)^{s'_i}$.

Proposition 2.7: Part I (Lin-Z 2025)

There exists an isomorphism $\beta_{i,\mathbf{s}} : U_q(\mathfrak{gl}_{m|n,\mathbf{s}}) \rightarrow U_q(\mathfrak{gl}_{m|n,\mathbf{s}'})$ given by

$$\begin{aligned} t_{ii,\mathbf{s}} &\mapsto d'_i t_{i+1,i+1,\mathbf{s}'}, \quad t_{i+1,i+1,\mathbf{s}} \mapsto d'_{i+1} t_{ii,\mathbf{s}'}, \quad t_{i+1,i,\mathbf{s}} \mapsto d'_i d'_{i+1} q^{-d'_i} \bar{t}_{i,i+1,\mathbf{s}'} \bar{t}_{ii,\mathbf{s}'}^{-2}, \\ t_{ik,\mathbf{s}} &\mapsto \varsigma'_{i-1,i;i,i+1} q^{-d'_i} t_{i+1,k,\mathbf{s}'} - \varsigma'_{k,i-1;i,i+1} t_{ii,\mathbf{s}'}^{-1} t_{i+1,i,\mathbf{s}'} t_{ik,\mathbf{s}'}, \quad \text{if } k \leq i-1, \\ t_{i+1,k,\mathbf{s}} &\mapsto -\varsigma'_{i-1,i;i,i+1} d'_{i+1} t_{ik,\mathbf{s}'}, \quad \text{if } k \leq i-1, \\ t_{li,\mathbf{s}} &\mapsto \varsigma'_{i,i+1;i,i+2} q^{d'_i} t_{l,i+1,\mathbf{s}'} - \varsigma'_{i,i+1;i+2,l} t_{ii,\mathbf{s}'} t_{li,\mathbf{s}'} \bar{t}_{i,i+1,\mathbf{s}'}, \quad \text{if } l \geq i+2, \\ t_{l,i+1,\mathbf{s}} &\mapsto -\varsigma'_{i,i+1;i+1,i+2} d'_{i+1} t_{li,\mathbf{s}'}, \quad \text{if } l \geq i+2, \\ t_{lk,\mathbf{s}} &\mapsto t_{lk,\mathbf{s}'}, \quad \text{in all remaining cases,} \end{aligned}$$

Odd reflection

Proposition 2.7: Part II (Lin-Z 2025)

and

$$\begin{aligned}
 \bar{t}_{ii,\mathbf{s}} &\mapsto d'_i \bar{t}_{i+1,i+1,\mathbf{s}'}, \quad \bar{t}_{i+1,i+1,\mathbf{s}} \mapsto d'_{i+1} \bar{t}_{ii,\mathbf{s}'}, \quad \bar{t}_{i,i+1,\mathbf{s}} \mapsto q^{d'_i} t_{ii,\mathbf{s}'}^{-2} t_{i+1,i,\mathbf{s}'}, \\
 \bar{t}_{ki,\mathbf{s}} &\mapsto \varsigma'_{i-1,i;i,i+1} d'_i q^{d'_i} \bar{t}_{k,i+1,\mathbf{s}'} - \varsigma'_{k,i-1;i,i+1} d'_i \bar{t}_{ki,\mathbf{s}'} \bar{t}_{i,i+1,\mathbf{s}'} \bar{t}_{ii,\mathbf{s}'}^{-1}, \quad \text{if } k \leq i-1, \\
 \bar{t}_{k,i+1,\mathbf{s}} &\mapsto -\varsigma'_{i-1,i;i,i+1} \bar{t}_{ki,\mathbf{s}'}, \quad \text{if } k \leq i-1, \\
 \bar{t}_{il,\mathbf{s}} &\mapsto \varsigma'_{i,i+1;i,i+2} d'_i q^{-d'_i} \bar{t}_{i+1,l,\mathbf{s}'} - \varsigma'_{i,i+1;i+2,l} d'_i t_{i+1,i,\mathbf{s}'} \bar{t}_{il,\mathbf{s}'} \bar{t}_{ii,\mathbf{s}'}, \quad \text{if } l \geq i+2, \\
 \bar{t}_{i+1,l,\mathbf{s}} &\mapsto -\varsigma'_{i,i+1;i+1,i+2} \bar{t}_{il,\mathbf{s}'}, \quad \text{if } l \geq i+2, \\
 \bar{t}_{kl,\mathbf{s}} &\mapsto \bar{t}_{kl,\mathbf{s}'}, \quad \text{in all remaining cases,}
 \end{aligned}$$

where $\varsigma'_{ab;cd} = (-1)^{(|a|+|b|)(|c|+|d|)}$ ($a, b, c, d \in I_{\mathbf{s}'}$).

If \mathbf{s} contains a subsequence $s_i s_{i+1} = 00$ or 11 , then $\beta_{i,\mathbf{s}}$ is an automorphism of $U_q(\mathfrak{gl}_{m|n,\mathbf{s}})$; otherwise, $\beta_{i,\mathbf{s}}$ is called an *odd reflection*.

Poincaré-Birkhoff-Witt basis

Using odd reflection, we can deduce the basis of $U_q(\mathfrak{gl}_{m|n,s})$ from the standard case.^[24]

Theorem 2.8 (Lin-Z 2025)

For any fixed $s \in \mathcal{S}(m|n)$, the set of all ordered monomials

$$\overrightarrow{\prod_{i \in I_s} t_{i,i-1,s}^{b_{i,i-1}} t_{i,i-2,s}^{b_{i,i-2}} \cdots t_{i,1,s}^{b_{i,1}}} \times \overrightarrow{\prod_{i \in I_s} \bar{t}_{i,i,s}^{b_{ii}}} \times \overrightarrow{\prod_{i \in I_s} \bar{t}_{1,i,s}^{b_{1,i}} \bar{t}_{2,i,s}^{b_{2,i}} \cdots \bar{t}_{i-1,i,s}^{b_{i-1,i}}}$$

with the exponents

$$b_{ij} \in \begin{cases} \mathbb{Z}_+, & \text{if } |i| + |j| = \bar{0} \text{ and } i \neq j, \\ \{0, 1\}, & \text{if } |i| + |j| = \bar{1}, \\ \mathbb{Z}, & \text{if } i = j \end{cases}$$

forms a basis for $U_q(\mathfrak{gl}_{m|n,s})$.

Contents

- 1 Background
- 2 $\mathfrak{gl}_{m|n}$ and their quantization
- 3 Representations of $U_q(\mathfrak{gl}_{m|n,s})$
- 4 $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ and PBW basis
- 5 Representations of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$

Highest weight representation and Kac module

To simplify the notation, we always write $\mathfrak{g}_s = \mathfrak{gl}_{m|n,s} (= \mathfrak{g}_s(\bar{0}) \oplus \mathfrak{g}_s(\bar{1}))$.

Definition 3.1

A representation V is called a *highest weight representation* over $U_q(\mathfrak{g}_s)$ if V is generated by a non-zero vector $\zeta \in V$ such that

$$\begin{aligned}\bar{t}_{ij,s}\zeta &= 0, \quad \forall 1 \leq i < j \leq N, \\ \bar{t}_{ii,s}\zeta &= \lambda_i \zeta, \quad \lambda_i \in \mathbb{C} \setminus \{0\}.\end{aligned}$$

Set $\Lambda = (\lambda_1, \dots, \lambda_N)$. The vector ζ and the N -tuple Λ are referred to as the *maximal vector* and the *highest weight* of V , respectively.

Let $\overset{\circ}{V}_s(\Lambda)$ be the f.d. irreducible representation of $U_q(\mathfrak{g}_s(\bar{0}))$ with the highest weight Λ . Define the *Kac module* $K_s(\Lambda)$ by setting

$$\bar{t}_{ij,s} \cdot \overset{\circ}{V}_s(\Lambda) = 0.$$

The $K_s(\Lambda)$ is f.d. with a unique irreducible quotient $\overline{K}_s(\Lambda)$. For any given Λ , there exists a unique irreducible representation $\overline{K}_s(\Lambda)$ with highest weight Λ .

Finite-dimentionality condition for standard s

Let $\mathring{V}_s(\Lambda)$ be the finite-dimensional irreducible representation of $U_q(\mathfrak{gl}_{m|n,s}(\bar{0}))$ with the highest weight Λ . Define the *Kac module* $K_s(\Lambda)$ by setting

$$\bar{t}_{ij,s} \cdot \mathring{V}_s(\Lambda) = 0.$$

The $K_s(\Lambda)$ is finite-dimensional with a unique irreducible quotient $\overline{K}_s(\Lambda)$.

Let $V_s(\Lambda)$ be a highest weight irreducible representation $U_q(\mathfrak{gl}_{m|n,s})$ with highest weight Λ . If s is standard, R.B. Zhang^[25] showed that $V_s(\Lambda) \simeq \overline{K}_s(\Lambda)$. That is to say,

Theorem 3.2

Let s be the standard parity sequence. The representation $V_s(\Lambda)$ is finite dimensional if and only if there exist some positive integers ℓ_i ($i \neq m$) such that

$$\frac{\epsilon_i \lambda_i}{\epsilon_{i+1} \lambda_{i+1}} = q_i^{\ell_i},$$

for some N -tuple $\epsilon = (\epsilon_1, \dots, \epsilon_N)$ ($\forall \epsilon_i \in \{\pm 1\}$).

[25] R.B. Zhang, *Finite-dimensional irreducible representations of the quantum supergroup $U_q(gl(m/n))$* ,

J. Math. Phys. 34 (3) (1993) 1236–1254

Transition rules

Let $\mathbf{s} = s_1 s_2 \cdots s_N \in \mathcal{S}(m|n)$, and let ζ be the maximal vector of $V_{\mathbf{s}}(\Lambda)$ with highest weight $\Lambda = (\lambda_1, \lambda_2, \dots, \lambda_N)$.

Proposition 3.3 (Lin-Z 2025)

Consider $i = 1, \dots, N-1$ such that the subsequence $s_i s_{i+1} = 01$ or 10 .

(a) If the radio $\frac{\lambda_i}{\lambda_{i+1}} \neq \pm 1$, then the representation $V_{\mathbf{s}}(\Lambda)$ of $U_q(\mathfrak{gl}_{m|n,s})$ is isomorphic to the representation $V_{\sigma_i \mathbf{s}}(\Lambda')$ of $U_q(\mathfrak{gl}_{m|n,\sigma_i s})$, where

$$\Lambda' = (\lambda_1, \dots, \lambda_{i-1}, q_i^{-1} \lambda_{i+1}, q_i^{-1} \lambda_i, \lambda_{i+2}, \dots, \lambda_N).$$

(b) If the radio $\frac{\lambda_i}{\lambda_{i+1}} = \pm 1$, then the representation $V_{\mathbf{s}}(\Lambda)$ of $U_q(\mathfrak{gl}_{m|n,s})$ is isomorphic to the representation $V_{\sigma_i \mathbf{s}}(\Lambda')$ of $U_q(\mathfrak{gl}_{m|n,\sigma_i s})$, where

$$\Lambda' = (\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \lambda_i, \lambda_{i+2}, \dots, \lambda_N).$$

Transition rules

Based on these transition rules, we determine the finite-dimensionality of $V_s(\Lambda)$ with $\Lambda = (\lambda_1, \dots, \lambda_N)$ via the following recursive steps:

- (1) If s is standard, use Theor. 3.2; otherwise, go to step (2).
- (2) If there exists $1 \leq i < N$, $\ell < 0$ for $s_i s_{i+1} = 00$ or 11 such that

$$\frac{\lambda_i}{\lambda_{i+1}} = \pm q_i^\ell,$$

then $V_s(\Lambda)$ is infinite-dimensional; otherwise, go to step (3).

- (3) Apply Prop. 3.3 for $s_i s_{i+1} = 01$ or 10 , then set $s' := \sigma_i s$ and $\Lambda := \Lambda'$, and return to step (1).

Contents

- 1 Background
- 2 $\mathfrak{gl}_{m|n}$ and their quantization
- 3 Representations of $U_q(\mathfrak{gl}_{m|n,s})$
- 4 $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ and PBW basis
- 5 Representations of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$

Affine R-matrix

Definition 4.1 (Lin-Z 2025)

For $\mathbf{s} \in \mathcal{S}(m|n)$, the (quantum affine) R-matrix of $\mathfrak{gl}_{m|n}$ is defined by

$$\mathcal{R}_{q,\mathbf{s}}(u, v) = \mathcal{R}_{q,\mathbf{s}}u - P_{\mathbf{s}}\mathcal{R}_{q,\mathbf{s}}^{-1}P_{\mathbf{s}}v \quad \text{with} \quad P_{\mathbf{s}} = \sum_{i,j \in I_{\mathbf{s}}} (-1)^{|j|} E_{ij,\mathbf{s}} \otimes E_{ji,\mathbf{s}},$$

which covers the standard case given by H.F. Zhang^[13].

Lemma 4.2 (Lin-Z 2025)

The R-matrix $\mathcal{R}_{q,\mathbf{s}}(u, v)$ is the \mathbb{Z}_2 -graded solution of the following quantum Yang-Baxter equation

$$\mathcal{R}_{q,\mathbf{s}}^{12}(u, v)\mathcal{R}_{q,\mathbf{s}}^{13}(u, w)\mathcal{R}_{q,\mathbf{s}}^{23}(v, w) = \mathcal{R}_{q,\mathbf{s}}^{23}(v, w)\mathcal{R}_{q,\mathbf{s}}^{13}(u, w)\mathcal{R}_{q,\mathbf{s}}^{12}(u, v). \quad (5.1)$$

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res. Not. (2016) 1126-1157

Quantum affine general linear superalgebra

Definition 4.3 (Lin-Z 2025)

For $\mathbf{s} \in \mathcal{S}(m|n)$, the quantum affine general linear superalgebra $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ is an associative superalgebra generated by $t_{ij,\mathbf{s}}^{(r)}, \bar{t}_{ij,\mathbf{s}}^{(r)}$ for $i, j \in I_{\mathbf{s}}$ and $r \geq 0$ subject to the defining relations,

$$t_{ij,\mathbf{s}}^{(0)} = \bar{t}_{ij,\mathbf{s}}^{(0)} = 0, \quad \text{if } 1 \leq i < j \leq N, \quad (5.2)$$

$$t_{ii,\mathbf{s}}^{(0)} \bar{t}_{ii,\mathbf{s}}^{(0)} = \bar{t}_{ii,\mathbf{s}}^{(0)} t_{ii,\mathbf{s}}^{(0)} = 1, \quad \text{if } i \in I_{\mathbf{s}}, \quad (5.3)$$

$$\mathcal{R}_{q,\mathbf{s}}^{23}(u, v) T_{\mathbf{s}}^1(u) T_{\mathbf{s}}^2(v) = T_{\mathbf{s}}^2(v) T_{\mathbf{s}}^1(u) \mathcal{R}_{q,\mathbf{s}}^{23}(u, v), \quad (5.4)$$

$$\mathcal{R}_{q,\mathbf{s}}^{23}(u, v) \bar{T}_{\mathbf{s}}^1(u) \bar{T}_{\mathbf{s}}^2(v) = \bar{T}_{\mathbf{s}}^2(v) \bar{T}_{\mathbf{s}}^1(u) \mathcal{R}_{q,\mathbf{s}}^{23}(u, v), \quad (5.5)$$

$$\mathcal{R}_{q,\mathbf{s}}^{23}(u, v) T_{\mathbf{s}}^1(u) \bar{T}_{\mathbf{s}}^2(v) = \bar{T}_{\mathbf{s}}^2(v) T_{\mathbf{s}}^1(u) \mathcal{R}_{q,\mathbf{s}}^{23}(u, v). \quad (5.6)$$

where the parities $|t_{ij,\mathbf{s}}^{(r)}| = |\bar{t}_{ij,\mathbf{s}}^{(r)}| = |i| + |j|$ and

$$T_{\mathbf{s}}(u) = \sum_{i,j \in I_{\mathbf{s}}} t_{ij,\mathbf{s}}(u) \otimes E_{ij,\mathbf{s}} \quad \text{with} \quad t_{ij,\mathbf{s}}(u) = \sum_{r \geq 0} t_{ij,\mathbf{s}}^{(r)} u^{-r},$$

$$\bar{T}_{\mathbf{s}}(u) = \sum_{i,j \in I_{\mathbf{s}}} \bar{t}_{ij,\mathbf{s}}(u) \otimes E_{ij,\mathbf{s}} \quad \text{with} \quad \bar{t}_{ij,\mathbf{s}}(u) = \sum_{r \geq 0} \bar{t}_{ij,\mathbf{s}}^{(r)} u^r.$$

Poincaré-Birkhoff-Witt basis

Theorem 4.4 (Lin-Z 2025)

Let \mathcal{B}_s be the set of all ordered monomials

$$\begin{aligned}
 & \overrightarrow{\prod}_{1-N \leqslant k \leqslant 1} \overrightarrow{\prod}_{1-k \leqslant i \leqslant N} \left\{ \left(t_{i,i+k,s}^{(0)} \right)^{b_{i,i+k,0}} \left(t_{i,i+k,s}^{(1)} \right)^{b_{i,i+k,1}} \left(\bar{t}_{i,i+k,s}^{(1)} \right)^{\bar{b}_{i,i+k,1}} \dots \right\} \\
 & \times \overrightarrow{\prod}_{1 \leqslant i \leqslant N} \left\{ \left(t_{ii,s}^{(0)} \right)^{b_{i,i,0}} \left(\bar{t}_{ii,s}^{(0)} \right)^{\bar{b}_{i,i,0}} \left(t_{ii,s}^{(1)} \right)^{b_{i,i,0}} \left(\bar{t}_{ii,s}^{(1)} \right)^{\bar{b}_{i,i,1}} \dots \right\} \\
 & \times \overrightarrow{\prod}_{1 \leqslant k \leqslant N-1} \overrightarrow{\prod}_{1 \leqslant i \leqslant k} \left\{ \left(\bar{t}_{i,i+k,s}^{(0)} \right)^{\bar{b}_{i,i+k,0}} \left(t_{i,i+k,s}^{(1)} \right)^{b_{i,i+k,1}} \left(\bar{t}_{i,i+k,s}^{(1)} \right)^{\bar{b}_{i,i+k,1}} \dots \right\}
 \end{aligned}$$

with the exponents

$$b_{i,j,r}, \bar{b}_{i,j,r} \in \mathbb{Z}_+, \quad \text{if } |i| + |j| = \bar{0},$$

$$b_{i,j,r}, \bar{b}_{i,j,r} \in \{0, 1\}, \quad \text{if } |i| + |j| = \bar{1},$$

$$b_{i,i,0} \times \bar{b}_{i,i,0} = 0 \quad \text{for } i \in I_s.$$

Then the monomial set \mathcal{B}_s forms an ordered basis of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$.

Contents

- 1 Background
- 2 $\mathfrak{gl}_{m|n}$ and their quantization
- 3 Representations of $U_q(\mathfrak{gl}_{m|n,s})$
- 4 $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ and PBW basis
- 5 Representations of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$

Highest weight representation

Definition 5.1

A representation V is called a *highest weight representation* over $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ if V is generated by a non-zero vector $\zeta \in V$ such that

$$\begin{aligned} t_{ij,s}(u)\zeta &= \bar{t}_{ij,s}(u)\zeta = 0, & \text{for } 1 \leq i < j \leq N, \\ t_{ii,s}(u)\zeta &= \lambda_i(u)\zeta, & \bar{t}_{ii,s}(u)\zeta = \bar{\lambda}_i(u)\zeta, & \text{for } i \in I_s, \end{aligned}$$

where $\lambda_i(u), \bar{\lambda}_i(u)$ are the formal power series given by

$$\lambda_i(u) = \sum_{r=0}^{\infty} \lambda_i^{(r)} u^{-r}, \quad \bar{\lambda}_i(u) = \sum_{r=0}^{\infty} \bar{\lambda}_i^{(r)} u^r,$$

for all coefficients $\lambda_i^{(r)}, \bar{\lambda}_i^{(r)} \in \mathbb{C}$ and $\lambda_i^{(0)} \bar{\lambda}_i^{(0)} = 1$ ($i \in I_s$). Set the N -tuples

$$\lambda(u) = (\lambda_1(u), \dots, \lambda_N(u)), \quad \bar{\lambda}(u) = (\bar{\lambda}_1(u), \dots, \bar{\lambda}_N(u)).$$

The vector ζ and the pair $(\lambda(u); \bar{\lambda}(u))$ are referred to as the *maximal vector* and the *highest weights* of V , respectively.

Highest weight representation

Proposition 5.2 (Lin-Z 2025)

Every finite-dimensional irreducible representation for $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ is a highest weight representation.

For any pair $(\lambda(u); \bar{\lambda}(u))$ with $\lambda_i^{(0)} \bar{\lambda}_i^{(0)} = 1$ ($i \in I_s$), there exists a non-trivial *Verma module* $M(\lambda(u); \bar{\lambda}(u))$ which is defined as a quotient of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ by the left ideal generated by all coefficients of

$$\begin{aligned} t_{ij}(u), \bar{t}_{ij}(u), \quad i < j, \quad i, j \in I_s \\ t_{ii}(u) - \lambda_i(u), \bar{t}_{ii}(u) - \bar{\lambda}_i(u) \quad i \in I_s. \end{aligned}$$

Then $M(\lambda(u); \bar{\lambda}(u))$ is a representation of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ with highest weight $(\lambda(u); \bar{\lambda}(u))$. It is indecomposable and has a unique irreducible quotient $V(\lambda(u); \bar{\lambda}(u))$. Moreover, for given weights $\lambda(u)$ and $\bar{\lambda}(u)$, up to isomorphism, there is a unique highest weight irreducible representation $V(\lambda(u); \bar{\lambda}(u))$.

Evaluation homomorphism

Proposition 5.3 (Lin-Z 2025)

For any $a \in \mathbb{C} \setminus \{0\}$ and $\mathbf{s} \in \mathcal{S}(m|n)$, there exists a surjective homomorphism of superalgebras

$$\text{ev}_{a,\mathbf{s}} : U_q(\widehat{\mathfrak{gl}}_{m|n,s}) \rightarrow U_q(\mathfrak{gl}_{m|n,s})$$

such that

$$T_{\mathbf{s}}(u) \mapsto T_{\mathbf{s}} - \bar{T}_{\mathbf{s}} a^{-1} u^{-1}, \quad \bar{T}_{\mathbf{s}}(u) \mapsto \bar{T}_{\mathbf{s}} - T_{\mathbf{s}} a u.$$

Proposition 5.3 is a generalization of Proposition 3.3(2) in^[13] to arbitrary parity sequences. The map $\text{ev}_{a,\mathbf{s}}$ serves as such an *evaluation homomorphism* for $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$.

[13] H. Zhang, RTT realization of quantum affine superalgebras and tensor products, Int. Math. Res. Not. (2016) 1126-1157

Evaluation representation

Let $V_s(\mathcal{M})$ be an irreducible representation for $U_q(\mathfrak{gl}_{m|n,s})$ with highest weight

$$\mathcal{M} = (\mu_1, \dots, \mu_N), \quad \text{for each } \mu_i \in \mathbb{C} \setminus \{0\}.$$

The *evaluation representation* $V_{a,s}(\mathcal{M})$ of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ is defined as the pullback of $V_s(\mathcal{M})$ via $\text{ev}_{a,s}$. Consequently, the representation $V_{a,s}(\mathcal{M})$ is the irreducible highest weight representation of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ with highest weights $(\mu(u); \bar{\mu}(u))$ given by

$$\begin{aligned} \mu_i(u) &= \mu_i^{-1} - \mu_i a^{-1} u^{-1}, & \bar{\mu}_i(u) &= \mu_i - \mu_i^{-1} a u, \\ \mu(u) &= (\mu_1(u), \mu_2(u), \dots, \mu_N(u)), & \bar{\mu}(u) &= (\bar{\mu}_1(u), \bar{\mu}_2(u), \dots, \bar{\mu}_N(u)). \end{aligned}$$

If $V_s(\mathcal{M})$ is finite-dimensional, there exists a series of integers $\ell_{ij} \geq 0$ ($|i| + |j| = \bar{0}$) such that $\frac{\lambda_i}{\lambda_j} = \pm q_i^{\ell_{ij} + \#_{(i,j)}}$ by Corollary 3.3. It follows that

$$\frac{\mu_i(u)}{\mu_j(u)} = q_i^{\ell_{ij} + \#_{(i,j)}} \frac{P_{ij}(q_i^{-2} u)}{P_{ij}(u)} = \frac{\bar{\mu}_i(u)}{\bar{\mu}_j(u)},$$

where

$$P_{ij}(u) = (1 - \mu_j^{-2} a u) (1 - q_i^{-2} \mu_j^{-2} a u) \cdots (1 - q_i^{-2(\ell_{ij} + \#_{(i,j)} - 1)} \mu_j^{-2} a u).$$

Finite-dimentionality condition for standard \mathbf{s}

Theorem 5.4 (Lin-Z 2025)

Let \mathbf{s} be the standard parity sequence. Consider the N -tuples

$$\lambda(u) = (\lambda_1(u), \lambda_2(u), \dots, \lambda_N(u)), \quad \bar{\lambda}(u) = (\bar{\lambda}_1(u), \bar{\lambda}_2(u), \dots, \bar{\lambda}_N(u))$$

for each series $\lambda_i(u), \bar{\lambda}_i(u)$ satisfying $\lambda_i^{(0)} \bar{\lambda}_i^{(0)} = 1$ ($i \in I_{\mathbf{s}}$). The irreducible highest weight representation $V_{\mathbf{s}}(\lambda(u); \bar{\lambda}(u))$ of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ is finite-dimensional if and only if there exist a series of polynomials $P_i(u) \in 1 + u\mathbb{C}[u]$ ($i \neq m, N$), and $Q_m(u), \tilde{Q}_m(u)$ with the products of the constant term and the leading coefficient equal to 1, such that

$$\frac{\epsilon_i \lambda_i(u)}{\epsilon_{i+1} \lambda_{i+1}(u)} = q_i^{\deg P_i(u)} \cdot \frac{P_i(q_i^{-2}u)}{P_i(u)} = \frac{\epsilon_i \bar{\lambda}_i(u)}{\epsilon_{i+1} \bar{\lambda}_{i+1}(u)}$$

for some $\epsilon_i, \epsilon_{i+1} \in \{\pm 1\}$, and

$$\frac{\lambda_m(u)}{\lambda_{m+1}(u)} = \frac{Q_m(u)}{\tilde{Q}_m(u)} = \frac{\bar{\lambda}_m(u)}{\bar{\lambda}_{m+1}(u)}.$$

General cases

Let $V_s(\mathcal{M}^{(k)})$ ($k = 1, \dots, l$) be the finite-dimensional representation of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ with highest weight $\mathcal{M}^{(k)} = (\mu_1^{(k)}, \dots, \mu_N^{(k)})$. Regard the tensor product

$$V_{a_1,s}(\mathcal{M}^{(1)}) \otimes V_{a_2,s}(\mathcal{M}^{(2)}) \otimes \dots \otimes V_{a_l,s}(\mathcal{M}^{(l)}), \quad a_k \neq 0, \quad (6.1)$$

as a representation of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$.

Conjecture 5.5 (Lin-Z 2025)

Every finite-dimensional irreducible representation of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ is a tensor product of evaluation representations.

General cases

Now we only checked it for the special case $(m, n) = (1, 1)$.

Theorem 5.6 (Lin-Z 2025)

The representation (6.1) of $U_q(\widehat{\mathfrak{gl}}_{1|1,s})$ is irreducible if condition

$$\frac{a_i}{a_j} \neq \frac{\mu_{i,2}^2}{\mu_{j,1}^2} \quad \text{and} \quad \frac{\mu_{i,1}^2}{\mu_{j,2}^2} \quad \text{for each pair } (i, j) \quad (6.2)$$

holds. Moreover, every finite-dimensional irreducible representation is isomorphic to a tensor product of evaluation representations with (6.1) satisfying (6.2).

Transition rules

Consider $i \in I_s$ such that $s_i s_{i+1} = 01$ or 10 . Let $\lambda_i(u), \lambda_{i+1}(u)$ be the formal series

$$\lambda_i(u) = \left((\lambda_i^{(1)})^{-1} - \lambda_i^{(1)} u^{-1} \right) \cdots \left((\lambda_i^{(l)})^{-1} - \lambda_i^{(l)} u^{-1} \right),$$

$$\bar{\lambda}_i(u) = \left(\lambda_i^{(1)} - (\lambda_i^{(1)})^{-1} u \right) \cdots \left(\lambda_i^{(l)} - (\lambda_i^{(l)})^{-1} u \right),$$

such that for a certain $k = 0, \dots, l$,

$$\lambda_i^{(r)}/\lambda_{i+1}^{(s)} \neq \pm 1 \text{ for all } r, s = 1, \dots, k,$$

$$\lambda_i^{(r)}/\lambda_{i+1}^{(s)} \in \{\pm 1\} \text{ for all } r = k+1, \dots, l.$$

Proposition 5.7: Part I (Lin-Z 2025)

If the representation $V_s(\lambda(u); \bar{\lambda}(u))$ of $U_q(\widehat{\mathfrak{gl}}_{m|n,s})$ is isomorphic to the irreducible quotient of the tensor product (6.1), then $V_{\sigma_i(s)}(\lambda(u)'; \bar{\lambda}(u)')$ of $U_q(\widehat{\mathfrak{gl}}_{m|n, \sigma_i(s)})$ is finite-dimensional. Here

$$\lambda'(u) = (\lambda'_1(u), \dots, \lambda'_N(u)), \quad \bar{\lambda}'(u) = (\bar{\lambda}'_1(u), \dots, \bar{\lambda}'_N(u)),$$

Transition rules

Proposition 5.7: Part II (Lin-Z 2025)

with

$$\lambda'_i(u) = \left(q_i(\lambda_{i+1}^{(1)})^{-1} - q_i^{-1} \lambda_{i+1}^{(1)} u^{-1} \right) \cdots \left(q_i(\lambda_{i+1}^{(k)})^{-1} - q_i^{-1} \lambda_{i+1}^{(k)} u^{-1} \right) \\ \left((\lambda_{i+1}^{(k+1)})^{-1} - \lambda_{i+1}^{(k+1)} u^{-1} \right) \cdots \left((\lambda_{i+1}^{(l)})^{-1} - \lambda_{i+1}^{(l)} u^{-1} \right),$$

$$\lambda'_{i+1}(u) = \left(q_i(\lambda_i^{(1)})^{-1} - q_i^{-1} \lambda_i^{(1)} u^{-1} \right) \cdots \left(q_i(\lambda_i^{(k)})^{-1} - q_i^{-1} \lambda_i^{(k)} u^{-1} \right) \\ \left((\lambda_i^{(k+1)})^{-1} - \lambda_i^{(k+1)} u^{-1} \right) \cdots \left((\lambda_i^{(l)})^{-1} - \lambda_i^{(l)} u^{-1} \right),$$

$$\bar{\lambda}'_i(u) = \left(q_i^{-1} \lambda_{i+1}^{(1)} - q_i(\lambda_{i+1}^{(1)})^{-1} u \right) \cdots \left(q_i^{-1} \lambda_{i+1}^{(k)} - q_i(\lambda_{i+1}^{(k)})^{-1} u \right) \\ \left(\lambda_{i+1}^{(k+1)} - (\lambda_{i+1}^{(k+1)})^{-1} u \right) \cdots \left(\lambda_{i+1}^{(l)} - (\lambda_{i+1}^{(l)})^{-1} u \right),$$

$$\bar{\lambda}'_{i+1}(u) = \left(q_i^{-1} \lambda_i^{(1)} - q_i(\lambda_i^{(1)})^{-1} u \right) \cdots \left(q_i^{-1} \lambda_i^{(k)} - q_i(\lambda_i^{(k)})^{-1} u \right) \\ \left(\lambda_i^{(k+1)} - (\lambda_i^{(k+1)})^{-1} u \right) \cdots \left(\lambda_i^{(l)} - (\lambda_i^{(l)})^{-1} u \right),$$

$$\lambda'_p(u) = \lambda_p(u), \quad \bar{\lambda}'_p(u) = \bar{\lambda}_p(u), \quad p \neq i, i+1.$$

Transition rules

Prop. 5.7 allows us to determine the finite-dimensionality condition for $V_s(\lambda(u); \bar{\lambda}(u))$, which is isomorphic to the irreducible quotient of a tensor product of evaluation representations.

- (1) If s is standard, use Theor. 5.4; otherwise, go to step (2).
- (2) If there do not exist some polynomial $P_i(u)$ such that one of the identities

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \pm q_i^{\deg P_i(u)} \cdot \frac{P_i(q_i^{-2}u)}{P_i(u)} = \frac{\bar{\lambda}_i(u)}{\bar{\lambda}_{i+1}(u)}$$

is not satisfied for $s_i s_{i+1} = 00$ or 11 , then $V_s(\lambda(u); \bar{\lambda}(u))$ is infinite-dimensional; otherwise, go to step (3).

- (3) Apply Prop. 5.7 for $s_i s_{i+1} = 01$ or 10 , then set $s' := \sigma_i s$ and $(\lambda(u); \bar{\lambda}(u)) := (\lambda'(u); \bar{\lambda}'(u))$, and return to step (1).

Thank for your attention!