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AIM Workshop: Finite tensor categories: their cohomology
and geometry; September 16-20, 2024
This workshop was mainly devoted to the following:

Conjecture (Etingof–Ostrik)
Let C be a finite tensor category. Then C has the finite generated
cohomology (FGC):

(fgc1) the cohomology ring H(C, 1) :=
⊕

n≥0 Extn
C(1, 1) is finitely

generated;

(fgc2) H(C,X ) =
⊕

n≥0 Extn
C(1,X ) is finitely generated as a module over

X for any object X ∈ C.
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• FGC plays an essential role in linking the noncommutative
Balmer spectra of any M∆C with its homological spectra.

• In the stable category C, H(C,k) ∼=
⊕

n≥0 HomC (1,Σn1) is
graded commutative since

(ΣX )⊗ (ΣY )
(−1)

∼= //

∼=
��

Σ(X ⊗ ΣY )
∼=
��

Σ(ΣX ⊗ Y )
∼= // Σ2(X ⊗ Y )

anti-commutes for any two objects X ,Y ∈ C.
• C has FGC ⇔ H(C,X ) is a noetherian module over H(C, 1)

for any object X ∈ C.
• We say a finite-dimensional Hopf algebra has FGC if rep(K )

has FGC. Generally, FGC can be asked for any augmented
algebra or any associative algebra regarding Hochschild
cohomology.
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Known Results

Over a field k of Char(k) > 0.
• (finite groups): Golod 59’, Venkov 59’ and Evens 61’.
• (finite group schemes): Friedlander-Suslin 97’.
• (Drinfeld doubles of finite group schemes): Negron 21’.

Over a field k of Char(k) = 0.
• (Lusztig’s small quantum groups): Ginzburg-Kummar 93’ and

Bendel-Nakano-Parshall-Pillen 07’.
• (pointed Hopf algebras with abelian radicals):

Mastnak-Pevtsova-Schauenburg-Witherspoon 09’,
Andruskiewitsch-Angiono-Pevtsova-Witherspoon 20’.

Over a noetherian commutative ring R.
• (finite group schemes/Spec(R)): van der Kallen 23’.
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Participants were asked to propose related problems and work
on one of them based on their personal choice.
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Problem (Andruskiewitsch’s ABC Conjecture)
Consider an exact sequence of finite-dimensional Hopf algebras

k→ A→ B → C → k .

Then, A and C have FGC if and only if B has FGC.



• Exact sequences of Hopf algebras are generalizations of exact
sequences of groups 1→ K → G → L→ 1.

• For 1→ Z (G)→ G → G/Z (G)→ 1 with finite p-group G , it
is Evens’s key step to prove k[G ] has FGC.
• As algebras, B ∼= A#σC is a crossed product, equivalently, B

is a A-Galois extension of C .
• Andruskiewitsch and Natale (24’) showed quasi-split abelian

extensions (A commutative and B cocommutative) has FGC.
• Known for Andruskiewitsch’s ABC conjecture:

B has FGC ⇒ A has FGC,
A,C have FGC ⇒ B has FGC is widely open even for A#B
(σ is trivial).
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Question (Andruskiewitsch-Natale)
Let K be a finite-dimensional Hopf algebra and R a
finite-dimensional braided Hopf algebra in K

KYD. If K and R have
FGC, does the bosonization R#K also has FGC?

• We are interested in the case when R = B(V ) is the Nichols
algebra of some Yetter-Drinfeld module V in K

KYD.
• Moreover if K = k[G ], the bosonization B(V )#k[G ] is a

pointed Hopf algebra with coradical k[G ].
• H(R, k) is connected graded, braided commutative in K

KYD.
• K is semisimple, H(K#R,k) = H(R,k)K . We only need to

show the k-affine algebra H(R, k) is noetherian. True:
K = k[G ] by Andruskiewitsch-Angiono-Pevtsova-Witherspoon
(22’), K = kG by Andruskiewitsch-Natale (25’).
• It is an open question asked by Wu-Zhang (03’) that is every

noetherian Hopf algebra over k an affine k-algebra? True for
pointed case by Yinhuo Zhang and his student Huan Jia.
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Theorem (AJNOPS, 25’)
The bosonization R#K has FGC if any of the following conditions
are satisfied:

(1) K is semisimple and R admits a deformation sequence.

(2) K is cocommutative and R admits a K-equivariant
deformation sequence.

(3) K admits a deformation sequence C of Hopf algebras and R
admits a C-equivariant deformation sequence.



Example
• Let G be a finite abelian group and Char(k) > 0. We have an

exact sequence of group algebras:
k→ k[Zr ]→ k[Zr ]→ k[G ]→ k.

• Let g be a restricted Lie algebra over k with Char(k) = p.
We have an exact sequence of Hopf algebras
k→ Z0(g)→ U(g)→ ures(g)→ k, where ures(g) is the
restricted universal enveloping algebra of g and Z0(g) is the
p-center of U(g) generated by xp − x [p] for any x ∈ g.
• Lusztig’s small quantum groups uq(g) at q a root of unity of

odd order l . We have k→ Z0 → UDK
q (g)→ uq(g)→ k,

where UDK
q (g) is the De Concini-Kac quantum enveloping

algebra at q and Z0 is the subalgebra generated by the l-th
powers of the generators Eα,Fα,Kα. Similarly for the
quantum Borel uq(b).
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Deformation Sequences
Definition (Bezrukavnikov-Ginzburg, Negron-Pevtsova, etc.)
An augmented algebra R admits a deformation sequence if there is
a pair of augmented algebra maps

Z �
� j // Q π // // R,

satisfying the following conditions:

(1) j is injective and π is surjective, preserving the augmentations.

(2) Q has finite global dimension and is module-finite and flat
over Z .

(3) Z is affine central in Q and smooth at its augmentation ideal
Z +.

(4) π induces an isomorphism R ∼= Q/Z +Q as augmented
algebras.
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Definition (Deformation Sequences of Hopf Algebras)
A deformation sequence of Hopf algebras is an exact sequence of
Hopf algebras:

k→ L→ H → K → k

satisfying

(1) H has finite global dimension and is module-finite over L.

(2) L is affine smooth central in H.



Examples of deformation sequences

Example (Drinfeld doubles of finite group schemes)
• G is a finite group scheme.
• Consider a closed embedding of G into some smooth affine

group scheme H (e.g., H = GL(V ) for some faithful
G-module V ).
• O(G) admits a deformation sequence

O(H/G) �
� // O(H) // // O(G) .
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• G is a finite group scheme.
• Consider a closed embedding of G into some smooth affine

group scheme H (e.g., H = GL(V ) for some faithful
G-module V ).
• O(G) admits a deformation sequence

O(H/G) �
� //

G
��

O(H) // //

G
��

O(G)

G
��

• There are G actions such that G acts on O(H) by adjoint
action and on O(H/G) by translation.
• The bosonization O(G)#k[G ] ∼= D(G) is the Drinfeld double

of the finite group scheme G .



Definition (Equivariant Deformation Sequences)
Suppose R is a finite-dimensional augmented algebra and K is a
finite-dimensional Hopf algebra.

We say R admits a K -equivariant deformation sequence if R
admits a deformation sequence

Z �
� j //

K

��
Q π // //

K

��
R

K

��

such that Z , Q and R are K -module algebras and j , π are
K -module algebra maps.



Definition (Equivariant Deformation Sequences)
Suppose R is a finite-dimensional augmented algebra and K is a
finite-dimensional Hopf algebra. Suppose K admits a deformation
sequence of Hopf algebras

C : W �
� // H // // K .

A deformation sequence of augmented algebras

Z �
� j // Q π // // R

is C-equivariant if
(1) Z , Q and R are augmented H-module algebras,
(2) j and π are maps of augmented H-module algebras,
(3) W acts trivially on Q and H acts trivially on Z .



Question&Answer Revisited

Question (Andruskiewitsch-Natale)
Let K be a finite-dimensional Hopf algebra and R a
finite-dimensional braided Hopf algebra in K

KYD. If K and R have
FGC, does the bosonization R#K also have FGC?

Theorem (AJNOPS, 25’)
The answer to Andruskiewitsch-Natale’s question is positive in any
of the following conditions:

(1) K is semisimple and R admits a deformation sequence.

(2) K is cocommutative and R admits a K-equivariant
deformation sequence.

(3) K admits a deformation sequence C of Hopf algebras and R
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Sketch of Proof

(1) Lift the deformation sequence Z ↪→ Q � R to a formal one

k[[x1, . . . , xn]] ∼= Ẑ ↪→ Q̂ � R̂ = R

by completing at the maximal ideal m := Z +.

(2) Use a result of Avramov-Gasharov-Peeva: the following are
equivalent, for any finite R-modules V and W :

1. Ext•
Q̂

(V ,W ) is finite over
BZ

2. Ext•R(V ,W ) is finite over
AZ ,

where AZ = S(m/m2) and BZ = ∧(m/m2).

(3) Write a DG version of Avramov-Gasharov-Peeva’s result in
Db(Rep(K )).
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1. Ext•
Q̂

(V ,W ) is finite over
BZ

2. Ext•R(V ,W ) is finite over
AZ ,

where AZ = S(m/m2) and BZ = ∧(m/m2).

(3) Write a DG version of Avramov-Gasharov-Peeva’s result in
Db(Rep(K )).



Corollary
Let V be a braided vector space that can be realized over a
finite-dimensional Hopf algebra K. Assume that the Nichols
algebra B(V ) is finite-dimensional and that it admits a
deformation sequence

B : Z ↪→ B̃(V ) � B(V )

where B̃(V ) is a pre-Nichols algebra of V . Then B(V )#K has
FGC, provided that
• K is semisimple; or
• K is cocommutative and B is K-equivariant; or
• K admits a deformation sequence of Hopf algebras

C : W ↪→ H � K

such that B is C-equivariant.



Example (The restricted Jordan plane)
• Char(k) = p is an odd prime.
• Let (V , c) be the 2-dimensional braided vector space with a

basis {x , y} and the braiding determined by

c(x ⊗ x) = x ⊗ x , c(y ⊗ x) = x ⊗ y ,
c(x ⊗ y) = (y + x)⊗ x , c(y ⊗ y) = (y + x)⊗ y .

• The Nichols algebra B(V ), also called the restricted Jordan
plane, is the algebra

B(V ) = k〈x , y | yx − xy + 1
2x2, xp, yp〉.

• Suppose (V , c) can be realized in K
KYD for some YD-triple

(g , χ, η) for a finite-dimensional Hopf algebra K , where

h · x = χ(h)x , h · y = χ(h)y + η(h)x , h ∈ K ;
δ(x) = g ⊗ x , δ(y) = g ⊗ y .



Example (The restricted Jordan plane)
• A YD-triple (g , χ, η) for K consists (g , χ) is a YD-pair such

that

χ(h) g =
∑

χ(h2) h1 g S(h3), for any h ∈ K .

• η ∈ Derχ,χ(K , k) such that

η(h)g =
∑

η(h2)h1gS(h3), for any h ∈ K ,
χ(g) = η(g) = 1.

• Then B(V ) admits a K -equivariant deformation sequence:

k[xp, yp] ↪→ k〈x , y | yx − xy + 1
2x2〉� B(V ).



Example (Nichols algebras of diagonal type)
• Char(k) = 0 and θ ∈ N. Fix a matrix q = (qij)i ,j∈Iθ

whose
entries are roots of 1.
• Suppose q is of Cartan type, so there exists a finite Cartan

matrix a = (aij)i ,j∈Iθ
such that qijqji = qaij

ii for all i 6= j ∈ Iθ.
• Let V be a k-vector space with a fixed basis {v1, . . . , vθ} and

Vq = (V , c) be the braided vector space whose braiding
c ∈ GL(V ⊗ V ) is given by

c(vi ⊗ vj) = qijvj ⊗ vi for any i , j ∈ Iθ.

• There is an exact sequence of braided Hopf algebras :

Z +(Vq) ι
↪→ B̃(Vq)

π
� B(Vq) .

• B̃(Vq) is the distinguished pre-Nichols algebra introduced by
Angiono and Z +(Vq) is a normal braided Hopf subalgebra of
B̃(Vq).



Example (Nichols algebras of diagonal type)
• Let ∆+ be the set of positive roots corresponding to a with

subset of simple roots {αi : i ∈ Iθ}.
• For α =

∑
i∈Iθ

aiαi , β =
∑

i∈Iθ
biαi ∈ ∆+, we set:

qαβ =
∏

i ,j∈Iθ

qai bj
ij and Nβ = ord(qββ) .

• If qNβ

αβ = 1, for all α, β ∈ ∆+ (Z +(Vbq) is central),

Z +(Vq) ι
↪→ B̃(Vq)

π
� B(Vq)

is a deformation sequence.
• Let K be a finite-dimensional Hopf algebra that admits a

family of YD-pairs (gi , χi )i∈Iθ
, χj(gi ) = qij , for alli , j ∈ Iθ.

• The family (gi , χi )i∈Iθ
gives a realization of Vq in K

KYD. Then
the above deformation sequence can be K -equivariant.



Thank You!
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