

Separable algebras in higher fusion categories

Hao Zheng

January 2026

YMSC and BIMSA

joint work with Liang Kong, Zhi-Hao Zhang, Jiaheng Zhao

Algebras in monoidal 1-categories

Recall that an *algebra* or E_1 -*algebra* in a monoidal 1-category \mathcal{A} is a triple (A, u_A, m_A) where A is an object of \mathcal{A} , $u_A : 1 \rightarrow A$ and $m_A : A \otimes A \rightarrow A$ are morphisms of \mathcal{A} that satisfy the unity and associativity properties.

Algebras in monoidal 1-categories

Recall that an *algebra* or E_1 -*algebra* in a monoidal 1-category \mathcal{A} is a triple (A, u_A, m_A) where A is an object of \mathcal{A} , $u_A : 1 \rightarrow A$ and $m_A : A \otimes A \rightarrow A$ are morphisms of \mathcal{A} that satisfy the unity and associativity properties.

An *algebra map* $f : (A, u_A, m_A) \rightarrow (B, u_B, m_B)$ is a morphism $f : A \rightarrow B$ of \mathcal{A} intertwining the unit and the multiplication.

Algebras in monoidal 1-categories

Recall that an *algebra* or E_1 -*algebra* in a monoidal 1-category \mathcal{A} is a triple (A, u_A, m_A) where A is an object of \mathcal{A} , $u_A : 1 \rightarrow A$ and $m_A : A \otimes A \rightarrow A$ are morphisms of \mathcal{A} that satisfy the unity and associativity properties.

An *algebra map* $f : (A, u_A, m_A) \rightarrow (B, u_B, m_B)$ is a morphism $f : A \rightarrow B$ of \mathcal{A} intertwining the unit and the multiplication.

The algebras and algebras maps in \mathcal{A} form a 1-category which we denote by $\text{Alg}(\mathcal{A})$ or $\text{Alg}_{E_1}(\mathcal{A})$.

Commutative algebras in braided monoidal 1-categories

An *commutative algebra* or E_2 -algebra in a braided monoidal 1-category \mathcal{A} is an algebra (A, u_A, m_A) satisfying the commutative diagram

$$\begin{array}{ccc} & A \otimes A & \\ \beta_{A,A} \nearrow & & \searrow m_A \\ A \otimes A & \xrightarrow{m_A} & A. \end{array}$$

Commutative algebras in braided monoidal 1-categories

An *commutative algebra* or E_2 -*algebra* in a braided monoidal 1-category \mathcal{A} is an algebra (A, u_A, m_A) satisfying the commutative diagram

$$\begin{array}{ccc} & A \otimes A & \\ \beta_{A,A} \nearrow & & \searrow m_A \\ A \otimes A & \xrightarrow{m_A} & A. \end{array}$$

The commutative algebras and algebra maps form a 1-category which we denote by $\text{CAlg}(\mathcal{A})$ or $\text{Alg}_{E_2}(\mathcal{A})$. It is a full subcategory of $\text{Alg}(\mathcal{A})$.

When \mathcal{A} is braided, $\text{Alg}(\mathcal{A})$ is monoidal under tensor product
 $(A, u_A, m_A) \otimes (B, u_B, m_B) = (A \otimes B, u_{A \otimes B}, m_A \otimes B)$

When \mathcal{A} is braided, $\text{Alg}(\mathcal{A})$ is monoidal under tensor product
 $(A, u_A, m_A) \otimes (B, u_B, m_B) = (A \otimes B, u_{A \otimes B}, m_A \otimes B)$ where
 $u_{A \otimes B} = u_A \otimes u_B$ and

$$\begin{array}{ccccc}
 & & A \otimes A \otimes B \otimes B & & \\
 & \nearrow A \otimes \beta_{B,A \otimes B} & & \searrow m_{A \otimes B} & \\
 (A \otimes B) \otimes (A \otimes B) & \xrightarrow{m_{A \otimes B}} & & & A \otimes B.
 \end{array}$$

Proposition

$$\mathrm{Alg}_{E_2}(\mathcal{A}) \simeq \mathrm{Alg}(\mathrm{Alg}(\mathcal{A})).$$

Proposition

$$\mathrm{Alg}_{E_2}(\mathcal{A}) \simeq \mathrm{Alg}(\mathrm{Alg}(\mathcal{A})).$$

Proof.

An object of $\mathrm{Alg}(\mathrm{Alg}(\mathcal{A}))$ consists of an object $(A, u_A, m_A) \in \mathrm{Alg}(\mathcal{A})$ and two morphisms $u : 1 \rightarrow A$ and $m : A \otimes A \rightarrow A$ in $\mathrm{Alg}(\mathcal{A})$.

Proposition

$$\mathrm{Alg}_{E_2}(\mathcal{A}) \simeq \mathrm{Alg}(\mathrm{Alg}(\mathcal{A})).$$

Proof.

An object of $\mathrm{Alg}(\mathrm{Alg}(\mathcal{A}))$ consists of an object $(A, u_A, m_A) \in \mathrm{Alg}(\mathcal{A})$ and two morphisms $u : 1 \rightarrow A$ and $m : A \otimes A \rightarrow A$ in $\mathrm{Alg}(\mathcal{A})$.

Proposition

$$\mathrm{Alg}_{E_2}(\mathcal{A}) \simeq \mathrm{Alg}(\mathrm{Alg}(\mathcal{A})).$$

Proof.

An object of $\mathrm{Alg}(\mathrm{Alg}(\mathcal{A}))$ consists of an object $(A, u_A, m_A) \in \mathrm{Alg}(\mathcal{A})$ and two morphisms $u : 1 \rightarrow A$ and $m : A \otimes A \rightarrow A$ in $\mathrm{Alg}(\mathcal{A})$.

It turns out that $u = u_A$ and $m = m_A$.

Proposition

$$\mathrm{Alg}_{E_2}(\mathcal{A}) \simeq \mathrm{Alg}(\mathrm{Alg}(\mathcal{A})).$$

Proof.

An object of $\mathrm{Alg}(\mathrm{Alg}(\mathcal{A}))$ consists of an object $(A, u_A, m_A) \in \mathrm{Alg}(\mathcal{A})$ and two morphisms $u : 1 \rightarrow A$ and $m : A \otimes A \rightarrow A$ in $\mathrm{Alg}(\mathcal{A})$.

It turns out that $u = u_A$ and $m = m_A$.

m is an algebra map implies that (A, u_A, m_A) is a commutative algebra. □

When \mathcal{A} is a symmetric, $\text{Alg}(\mathcal{A})$ and $\text{Alg}_{E_2}(\mathcal{A})$ are symmetric.

When \mathcal{A} is a symmetric, $\text{Alg}(\mathcal{A})$ and $\text{Alg}_{E_2}(\mathcal{A})$ are symmetric.

Proposition

$$\text{Alg}(\text{Alg}_{E_2}(\mathcal{A})) \simeq \text{Alg}_{E_2}(\mathcal{A}).$$

When \mathcal{A} is a symmetric, $\text{Alg}(\mathcal{A})$ and $\text{Alg}_{E_2}(\mathcal{A})$ are symmetric.

Proposition

$$\text{Alg}(\text{Alg}_{E_2}(\mathcal{A})) \simeq \text{Alg}_{E_2}(\mathcal{A}).$$

When \mathcal{A} is a symmetric, $\text{Alg}(\mathcal{A})$ and $\text{Alg}_{E_2}(\mathcal{A})$ are symmetric.

Proposition

$$\text{Alg}(\text{Alg}_{E_2}(\mathcal{A})) \simeq \text{Alg}_{E_2}(\mathcal{A}).$$

To summarize, we see that

- E_m -algebra = E_1 -algebra in the category of E_{m-1} -algebras.

When \mathcal{A} is a symmetric, $\text{Alg}(\mathcal{A})$ and $\text{Alg}_{E_2}(\mathcal{A})$ are symmetric.

Proposition

$$\text{Alg}(\text{Alg}_{E_2}(\mathcal{A})) \simeq \text{Alg}_{E_2}(\mathcal{A}).$$

To summarize, we see that

- E_m -algebra = E_1 -algebra in the category of E_{m-1} -algebras.
- E_m -algebra = E_{m+1} -algebra for large m .

Monoidal 1-categories as E_1 -algebras

An E_1 -algebra \mathcal{A} in the symmetric monoidal 2-category $\mathcal{C}\text{at}_1$ of 1-categories is a monoidal 1-category:

Monoidal 1-categories as E_1 -algebras

An E_1 -algebra \mathcal{A} in the symmetric monoidal 2-category $\mathcal{C}\text{at}_1$ of 1-categories is a monoidal 1-category:

- The unit $u_{\mathcal{A}} : * \rightarrow \mathcal{A}$ supplies a distinguished object $1 \in \mathcal{A}$.

Monoidal 1-categories as E_1 -algebras

An E_1 -algebra \mathcal{A} in the symmetric monoidal 2-category Cat_1 of 1-categories is a monoidal 1-category:

- The unit $u_{\mathcal{A}} : * \rightarrow \mathcal{A}$ supplies a distinguished object $1 \in \mathcal{A}$.
- The multiplication $m_{\mathcal{A}} : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ supplies a tensor product of \mathcal{A} .

Braided monoidal 1-categories as E_2 -algebras

An E_2 -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is a braided monoidal 1-category:

Braided monoidal 1-categories as E_2 -algebras

An E_2 -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is a braided monoidal 1-category:

- As an E_2 -algebra, \mathcal{A} is a monoidal 1-category equipped with a monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.

Braided monoidal 1-categories as E_2 -algebras

An E_2 -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is a braided monoidal 1-category:

- As an E_2 -algebra, \mathcal{A} is a monoidal 1-category equipped with a monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
- It turns out $m \simeq \otimes$, so that $\otimes : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is promoted to a monoidal functor.

Braided monoidal 1-categories as E_2 -algebras

An E_2 -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is a braided monoidal 1-category:

- As an E_2 -algebra, \mathcal{A} is a monoidal 1-category equipped with a monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
- It turns out $m \simeq \otimes$, so that $\otimes : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is promoted to a monoidal functor.
- Giving a braiding on \mathcal{A} is the same thing as promoting \otimes to a monoidal functor.

Symmetric monoidal 1-categories as E_3 -algebras

An E_3 -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is a symmetric monoidal 1-category:

Symmetric monoidal 1-categories as E_3 -algebras

An E_3 -algebra \mathcal{A} in $\mathcal{C}\mathbf{at}_1$ is a symmetric monoidal 1-category:

- As an E_3 -algebra, \mathcal{A} is a braided monoidal 1-category equipped with a braided monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.

Symmetric monoidal 1-categories as E_3 -algebras

An E_3 -algebra \mathcal{A} in $\mathcal{C}\mathbf{at}_1$ is a symmetric monoidal 1-category:

- As an E_3 -algebra, \mathcal{A} is a braided monoidal 1-category equipped with a braided monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
- It turns out $m \simeq \otimes$, so that the monoidal functor $\otimes : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is braided.

Symmetric monoidal 1-categories as E_3 -algebras

An E_3 -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is a symmetric monoidal 1-category:

- As an E_3 -algebra, \mathcal{A} is a braided monoidal 1-category equipped with a braided monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
- It turns out $m \simeq \otimes$, so that the monoidal functor $\otimes : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is braided.
- \mathcal{A} is symmetric if and only if \otimes is braided.

Symmetric monoidal 1-categories as E_3 -algebras

An E_3 -algebra \mathcal{A} in $\mathcal{C}\mathbf{at}_1$ is a symmetric monoidal 1-category:

- As an E_3 -algebra, \mathcal{A} is a braided monoidal 1-category equipped with a braided monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
- It turns out $m \simeq \otimes$, so that the monoidal functor $\otimes : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is braided.
- \mathcal{A} is symmetric if and only if \otimes is braided.

Symmetric monoidal 1-categories as E_3 -algebras

An E_3 -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is a symmetric monoidal 1-category:

- As an E_3 -algebra, \mathcal{A} is a braided monoidal 1-category equipped with a braided monoidal functor $m : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
- It turns out $m \simeq \otimes$, so that the monoidal functor $\otimes : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is braided.
- \mathcal{A} is symmetric if and only if \otimes is braided.

An E_m -algebra \mathcal{A} in $\mathcal{C}\text{at}_1$ is also symmetric monoidal 1-category for $m \geq 4$.

E_m -monoidal n -categories

An E_m -monoidal n -category is an E_m -algebra in the symmetric monoidal $(n + 1)$ -category $\mathcal{C}\text{at}_n$ of n -categories.

E_m -monoidal n -categories

An E_m -monoidal n -category is an E_m -algebra in the symmetric monoidal $(n + 1)$ -category $\mathcal{C}\text{at}_n$ of n -categories.

An E_m -algebra in $\mathcal{C}\text{at}_n$ is automatically an E_{m+1} -algebra for $m \geq n + 2$.

E_m -monoidal n -categories

An E_m -monoidal n -category is an E_m -algebra in the symmetric monoidal $(n+1)$ -category $\mathcal{C}\text{at}_n$ of n -categories.

An E_m -algebra in $\mathcal{C}\text{at}_n$ is automatically an E_{m+1} -algebra for $m \geq n+2$.

E_1 -algebras in an E_m -monoidal n -category \mathcal{A} form an E_{m-1} -monoidal n -category $\text{Alg}_{E_1}(\mathcal{A})$. Therefore, we can define by induction $\text{Alg}_{E_k}(\mathcal{A}) = \text{Alg}_{E_1}(\text{Alg}_{E_{k-1}}(\mathcal{A}))$ for $m \geq k$.

E_m -monoidal n -categories as deloopings

There is another way to define E_m -monoidal categories without using the language of algebras.

E_m -monoidal n -categories as deloopings

There is another way to define E_m -monoidal categories without using the language of algebras.

An E_1 -monoidal n -category = an $(n + 1)$ -category with a single object \bullet :

E_m -monoidal n -categories as deloopings

There is another way to define E_m -monoidal categories without using the language of algebras.

An E_1 -monoidal n -category = an $(n + 1)$ -category with a single object \bullet :

- An $(n + 1)$ -category \mathcal{C} with a single object \bullet induces a monoidal n -category $\mathcal{A} := \text{Hom}_{\mathcal{C}}(\bullet, \bullet)$ with tensor unit $\text{Id}_{\mathcal{C}}$ and tensor product $X \otimes Y := X \circ Y$.

E_m -monoidal n -categories as deloopings

There is another way to define E_m -monoidal categories without using the language of algebras.

An E_1 -monoidal n -category = an $(n + 1)$ -category with a single object \bullet :

- An $(n + 1)$ -category \mathcal{C} with a single object \bullet induces a monoidal n -category $\mathcal{A} := \text{Hom}_{\mathcal{C}}(\bullet, \bullet)$ with tensor unit $\text{Id}_{\mathcal{C}}$ and tensor product $X \otimes Y := X \circ Y$.

E_m -monoidal n -categories as deloopings

There is another way to define E_m -monoidal categories without using the language of algebras.

An E_1 -monoidal n -category = an $(n + 1)$ -category with a single object \bullet :

- An $(n + 1)$ -category \mathcal{C} with a single object \bullet induces a monoidal n -category $\mathcal{A} := \text{Hom}_{\mathcal{C}}(\bullet, \bullet)$ with tensor unit $\text{Id}_{\mathcal{C}}$ and tensor product $X \otimes Y := X \circ Y$.

We denote \mathcal{C} by $B\mathcal{A}$ and refer to $B\mathcal{A}$ to as the *delooping* of \mathcal{A} .

We denote \mathcal{A} by $\Omega\mathcal{C}$ and refer to \mathcal{A} to as the *looping* of \mathcal{C} .

An E_m -monoidal n -category = an E_{m-1} -monoidal $(n+1)$ -category
with a single object \bullet :

An E_m -monoidal n -category = an E_{m-1} -monoidal $(n+1)$ -category with a single object \bullet :

- For an E_{m-1} -monoidal $(n+1)$ -category \mathcal{C} with a single object \bullet , $\mathcal{A} := \text{Hom}_{\mathcal{C}}(\bullet, \bullet)$ is an E_{m-1} -monoidal n -category by induction by regarding \mathcal{C} as an E_{m-2} -monoidal $(n+1)$ -category. Then the multiplication of \mathcal{C} induces a multiplication of \mathcal{A} .

An E_m -monoidal n -category = an E_{m-1} -monoidal $(n+1)$ -category with a single object \bullet :

- For an E_{m-1} -monoidal $(n+1)$ -category \mathcal{C} with a single object \bullet , $\mathcal{A} := \text{Hom}_{\mathcal{C}}(\bullet, \bullet)$ is an E_{m-1} -monoidal n -category by induction by regarding \mathcal{C} as an E_{m-2} -monoidal $(n+1)$ -category. Then the multiplication of \mathcal{C} induces a multiplication of \mathcal{A} .

An E_m -monoidal n -category = an E_{m-1} -monoidal $(n+1)$ -category with a single object \bullet :

- For an E_{m-1} -monoidal $(n+1)$ -category \mathcal{C} with a single object \bullet , $\mathcal{A} := \text{Hom}_{\mathcal{C}}(\bullet, \bullet)$ is an E_{m-1} -monoidal n -category by induction by regarding \mathcal{C} as an E_{m-2} -monoidal $(n+1)$ -category. Then the multiplication of \mathcal{C} induces a multiplication of \mathcal{A} .

Therefore, an E_m -monoidal n -category can be encoded by a sequence $(\mathcal{A}, B\mathcal{A}, B^2\mathcal{A}, \dots, B^m\mathcal{A})$ where $B^k\mathcal{A}$ is an $(n+k)$ -category with a single object \bullet and $B^{k-1}\mathcal{A} = \Omega(B^k\mathcal{A})$.

An E_m -monoidal n -category = an E_{m-1} -monoidal $(n+1)$ -category with a single object \bullet :

- For an E_{m-1} -monoidal $(n+1)$ -category \mathcal{C} with a single object \bullet , $\mathcal{A} := \text{Hom}_{\mathcal{C}}(\bullet, \bullet)$ is an E_{m-1} -monoidal n -category by induction by regarding \mathcal{C} as an E_{m-2} -monoidal $(n+1)$ -category. Then the multiplication of \mathcal{C} induces a multiplication of \mathcal{A} .

Therefore, an E_m -monoidal n -category can be encoded by a sequence $(\mathcal{A}, B\mathcal{A}, B^2\mathcal{A}, \dots, B^m\mathcal{A})$ where $B^k\mathcal{A}$ is an $(n+k)$ -category with a single object \bullet and $B^{k-1}\mathcal{A} = \Omega(B^k\mathcal{A})$.

The advantage of this definition is that all the algebraic structures are hidden in the categorical data.

E_k -algebras as deloopings

There is also an alternative way to define E_k -algebras in E_m -monoidal categories.

E_k -algebras as deloopings

There is also an alternative way to define E_k -algebras in E_m -monoidal categories.

Definition

An E_0 -monoidal n -category is an n -category \mathcal{A} equipped with a distinguished object $1_{\mathcal{A}}$.

E_k -algebras as deloopings

There is also an alternative way to define E_k -algebras in E_m -monoidal categories.

Definition

An E_0 -monoidal n -category is an n -category \mathcal{A} equipped with a distinguished object $1_{\mathcal{A}}$.

E_k -algebras as deloopings

There is also an alternative way to define E_k -algebras in E_m -monoidal categories.

Definition

An E_0 -monoidal n -category is an n -category \mathcal{A} equipped with a distinguished object $1_{\mathcal{A}}$.

An E_0 -algebra in an E_0 -monoidal n -category \mathcal{A} is an object $A \in \mathcal{A}$ equipped with a 1-morphism $u_A : 1 \rightarrow A$.

E_k -algebras as deloopings

There is also an alternative way to define E_k -algebras in E_m -monoidal categories.

Definition

An E_0 -monoidal n -category is an n -category \mathcal{A} equipped with a distinguished object $1_{\mathcal{A}}$.

An E_0 -algebra in an E_0 -monoidal n -category \mathcal{A} is an object $A \in \mathcal{A}$ equipped with a 1-morphism $u_A : 1 \rightarrow A$.

An E_0 -algebra map $f : A \rightarrow B$ is a 1-morphism of \mathcal{A} equipped with an equivalence $u_A \simeq u_B \circ f$.

Example

Let A be a separable algebra in a fusion 1-category \mathcal{A} .

Example

Let A be a separable algebra in a fusion 1-category \mathcal{A} .

- Let $\Sigma\mathcal{A}$ denote the 2-category of separable left \mathcal{A} -modules.
We regard $\Sigma\mathcal{A}$ as an E_0 -monoidal 2-category with the distinguished object \mathcal{A} .

Example

Let A be a separable algebra in a fusion 1-category \mathcal{A} .

- Let $\Sigma\mathcal{A}$ denote the 2-category of separable left \mathcal{A} -modules. We regard $\Sigma\mathcal{A}$ as an E_0 -monoidal 2-category with the distinguished object \mathcal{A} .
- Let $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$. It defines an E_0 -algebra in $\Sigma\mathcal{A}$ with the unit $u_{\hat{\Sigma}A} : \mathcal{A} \rightarrow \hat{\Sigma}A$, $X \mapsto X \otimes A$.

Example

Let A be a separable algebra in a fusion 1-category \mathcal{A} .

- Let $\Sigma\mathcal{A}$ denote the 2-category of separable left \mathcal{A} -modules. We regard $\Sigma\mathcal{A}$ as an E_0 -monoidal 2-category with the distinguished object \mathcal{A} .
- Let $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$. It defines an E_0 -algebra in $\Sigma\mathcal{A}$ with the unit $u_{\hat{\Sigma}A} : \mathcal{A} \rightarrow \hat{\Sigma}A$, $X \mapsto X \otimes A$.
- One recovers the E_1 -algebra A from the E_0 -algebra $\hat{\Sigma}A$:
$$A \simeq u_{\hat{\Sigma}A}^R \circ u_{\hat{\Sigma}A}(1_{\mathcal{A}}).$$

Example

Let A be a separable algebra in a fusion 1-category \mathcal{A} .

- Let $\Sigma\mathcal{A}$ denote the 2-category of separable left \mathcal{A} -modules. We regard $\Sigma\mathcal{A}$ as an E_0 -monoidal 2-category with the distinguished object \mathcal{A} .
- Let $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$. It defines an E_0 -algebra in $\Sigma\mathcal{A}$ with the unit $u_{\hat{\Sigma}A} : \mathcal{A} \rightarrow \hat{\Sigma}A$, $X \mapsto X \otimes A$.
- One recovers the E_1 -algebra A from the E_0 -algebra $\hat{\Sigma}A$:
$$A \simeq u_{\hat{\Sigma}A}^R \circ u_{\hat{\Sigma}A}(1_{\mathcal{A}}).$$

Example

Let A be a separable algebra in a fusion 1-category \mathcal{A} .

- Let $\Sigma\mathcal{A}$ denote the 2-category of separable left \mathcal{A} -modules. We regard $\Sigma\mathcal{A}$ as an E_0 -monoidal 2-category with the distinguished object \mathcal{A} .
- Let $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$. It defines an E_0 -algebra in $\Sigma\mathcal{A}$ with the unit $u_{\hat{\Sigma}A} : \mathcal{A} \rightarrow \hat{\Sigma}A$, $X \mapsto X \otimes A$.
- One recovers the E_1 -algebra A from the E_0 -algebra $\hat{\Sigma}A$:
$$A \simeq u_{\hat{\Sigma}A}^R \circ u_{\hat{\Sigma}A}(1_{\mathcal{A}}).$$

Therefore, the E_1 -algebra A is encoded by the E_0 -algebra $\hat{\Sigma}A$ in $\Sigma\mathcal{A}$.

Example

Let A be a commutative separable algebra in a braided fusion 1-category \mathcal{A} .

Example

Let A be a commutative separable algebra in a braided fusion 1-category \mathcal{A} .

- $\Sigma\mathcal{A}$ is a fusion 2-category with tensor product $\boxtimes_{\mathcal{A}}$.

Example

Let A be a commutative separable algebra in a braided fusion 1-category \mathcal{A} .

- $\Sigma\mathcal{A}$ is a fusion 2-category with tensor product $\boxtimes_{\mathcal{A}}$.
- $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$ is a separable algebra in $\Sigma\mathcal{A}$.

Example

Let A be a commutative separable algebra in a braided fusion 1-category \mathcal{A} .

- $\Sigma\mathcal{A}$ is a fusion 2-category with tensor product $\boxtimes_{\mathcal{A}}$.
- $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$ is a separable algebra in $\Sigma\mathcal{A}$.
- Let $\hat{\Sigma}^2A = \text{RMod}_{\hat{\Sigma}A}(\Sigma\mathcal{A})$. It defines an E_0 -algebra in $\Sigma^2\mathcal{A}$.

Example

Let A be a commutative separable algebra in a braided fusion 1-category \mathcal{A} .

- $\Sigma\mathcal{A}$ is a fusion 2-category with tensor product $\boxtimes_{\mathcal{A}}$.
- $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$ is a separable algebra in $\Sigma\mathcal{A}$.
- Let $\hat{\Sigma}^2A = \text{RMod}_{\hat{\Sigma}A}(\Sigma\mathcal{A})$. It defines an E_0 -algebra in $\Sigma^2\mathcal{A}$.
- One recovers the E_2 -algebra A from the E_1 -algebra $\hat{\Sigma}A$ and recover the latter from the E_0 -algebra $\hat{\Sigma}^2A$.

Example

Let A be a commutative separable algebra in a braided fusion 1-category \mathcal{A} .

- $\Sigma\mathcal{A}$ is a fusion 2-category with tensor product $\boxtimes_{\mathcal{A}}$.
- $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$ is a separable algebra in $\Sigma\mathcal{A}$.
- Let $\hat{\Sigma}^2A = \text{RMod}_{\hat{\Sigma}A}(\Sigma\mathcal{A})$. It defines an E_0 -algebra in $\Sigma^2\mathcal{A}$.
- One recovers the E_2 -algebra A from the E_1 -algebra $\hat{\Sigma}A$ and recover the latter from the E_0 -algebra $\hat{\Sigma}^2A$.

Example

Let A be a commutative separable algebra in a braided fusion 1-category \mathcal{A} .

- $\Sigma\mathcal{A}$ is a fusion 2-category with tensor product $\boxtimes_{\mathcal{A}}$.
- $\hat{\Sigma}A = \text{RMod}_A(\mathcal{A})$ is a separable algebra in $\Sigma\mathcal{A}$.
- Let $\hat{\Sigma}^2A = \text{RMod}_{\hat{\Sigma}A}(\Sigma\mathcal{A})$. It defines an E_0 -algebra in $\Sigma^2\mathcal{A}$.
- One recovers the E_2 -algebra A from the E_1 -algebra $\hat{\Sigma}A$ and recover the latter from the E_0 -algebra $\hat{\Sigma}^2A$.

Therefore, the E_2 -algebra A is encoded by the E_0 -algebra $\hat{\Sigma}^2A$ in $\Sigma^2\mathcal{A}$.

Definition (KZZZ)

A *separable E_k -algebra* in an E_m -multi-fusion n -category \mathcal{A} is a separable E_{k-1} -algebra $\hat{\Sigma}A$ in the E_{m-1} -multi-fusion $(n+1)$ -category $\Sigma\mathcal{A}$ such that the unit map $1_{\mathcal{A}} \rightarrow u_{\hat{\Sigma}A}^R \circ u_{\hat{\Sigma}A}(1_{\mathcal{A}})$ extends to a condensation.

Definition (KZZZ)

A *separable E_k -algebra* in an E_m -multi-fusion n -category \mathcal{A} is a separable E_{k-1} -algebra $\hat{\Sigma}A$ in the E_{m-1} -multi-fusion $(n+1)$ -category $\Sigma\mathcal{A}$ such that the unit map $1_{\mathcal{A}} \rightarrow u_{\hat{\Sigma}A}^R \circ u_{\hat{\Sigma}A}(1_{\mathcal{A}})$ extends to a condensation.

Remark

A separable E_k -algebra in an E_m -multi-fusion n -category \mathcal{A} is encoded by a sequence

$$(A, \hat{\Sigma}A, \hat{\Sigma}^2A, \dots, \hat{\Sigma}^kA)$$

where $\hat{\Sigma}^jA$ is an E_0 -algebra in $\Sigma^j\mathcal{A}$ and $\hat{\Sigma}^{j-1}A = u_{\hat{\Sigma}^jA}^R \circ u_{\hat{\Sigma}^jA}(1_{\Sigma^{j-1}\mathcal{A}})$.

E_k -modules over E_k -algebras

This operad-free approach also works for E_k -modules.

E_k -modules over E_k -algebras

This operad-free approach also works for E_k -modules.

- An E_1 -module over an E_1 -algebra A is an A - A -bimodule.

E_k -modules over E_k -algebras

This operad-free approach also works for E_k -modules.

- An E_1 -module over an E_1 -algebra A is an A - A -bimodule.
- An E_2 -module over an E_2 -algebra A in a monoidal 1-category is a local A -module.

E_k -modules over E_k -algebras

This operad-free approach also works for E_k -modules.

- An E_1 -module over an E_1 -algebra A is an A - A -bimodule.
- An E_2 -module over an E_2 -algebra A in a monoidal 1-category is a local A -module.
- Intuitively, an E_k -algebra is an algebra with a k -dimensional multiplication, and an E_k -module receives a k -dimensional action.

Definition (KZZZ)

Let A be an E_k -algebra in an E_k -multi-fusion n -category \mathcal{A} . The category of *separable E_k -modules* over A is defined to be

$$\text{Mod}_A^{E_k}(\mathcal{A}) := \Omega^k(\Sigma^k \mathcal{A}, \hat{\Sigma}^k A).$$

Definition (KZZZ)

Let A be an E_k -algebra in an E_k -multi-fusion n -category \mathcal{A} . The category of *separable E_k -modules* over A is defined to be

$$\mathrm{Mod}_A^{E_k}(\mathcal{A}) := \Omega^k(\Sigma^k \mathcal{A}, \hat{\Sigma}^k A).$$

Remark

$\mathrm{Mod}_A^{E_k}(\mathcal{A})$ is an E_k -multi-fusion n -category.

Definition (KZZZ)

Let A be an E_k -algebra in an E_k -multi-fusion n -category \mathcal{A} . The category of *separable E_k -modules* over A is defined to be

$$\mathrm{Mod}_A^{E_k}(\mathcal{A}) := \Omega^k(\Sigma^k \mathcal{A}, \hat{\Sigma}^k A).$$

Remark

$\mathrm{Mod}_A^{E_k}(\mathcal{A})$ is an E_k -multi-fusion n -category.

Example

$$\mathrm{Mod}_A^{E_1}(\mathcal{A}) = \Omega(\Sigma \mathcal{A}, \mathrm{RMod}_A(\mathcal{A})) \simeq \mathrm{BMod}_{A|A}(\mathcal{A}).$$

Proposition (KZZZ)

$$\text{Mod}_A^{E_k}(\mathcal{A}) \simeq \mathfrak{Z}_k(\mathcal{A}, \mathfrak{Z}_{k-1}(\text{RMod}_A(\mathcal{A}))).$$

Proposition (KZZZ)

$$\text{Mod}_A^{E_k}(\mathcal{A}) \simeq \mathfrak{Z}_k(\mathcal{A}, \mathfrak{Z}_{k-1}(\text{RMod}_A(\mathcal{A}))).$$

Example

$\text{Mod}_A^{E_2}(\mathcal{A}) \simeq \mathfrak{Z}_2(\mathcal{A}, \mathfrak{Z}_1(\text{RMod}_A(\mathcal{A}))).$ When $n = 1$, the right hand side is the category of local A -modules in \mathcal{A} .

Lagrangian E_k -algebras

Definition (KZZZ)

An E_k -multi-fusion n -category \mathcal{A} is *nondegenerate* if $\Sigma^k \mathcal{A}$ is an invertible object of $(n+k+1)\text{-}\text{Vec}$.

Lagrangian E_k -algebras

Definition (KZZZ)

An E_k -multi-fusion n -category \mathcal{A} is *nondegenerate* if $\Sigma^k \mathcal{A}$ is an invertible object of $(n+k+1)\text{-}\text{Vec}$.

Lagrangian E_k -algebras

Definition (KZZZ)

An E_k -multi-fusion n -category \mathcal{A} is *nondegenerate* if $\Sigma^k \mathcal{A}$ is an invertible object of $(n+k+1)\text{-Vec}$.

A separable E_k -algebra A in a nondegenerate E_k -multi-fusion n -category is *Lagrangian* if $\hat{\Sigma}^k A$ is an invertible object of $\Sigma^k \mathcal{A}$.

Lagrangian E_k -algebras

Definition (KZZZ)

An E_k -multi-fusion n -category \mathcal{A} is *nondegenerate* if $\Sigma^k \mathcal{A}$ is an invertible object of $(n+k+1)\text{-Vec}$.

A separable E_k -algebra A in a nondegenerate E_k -multi-fusion n -category is *Lagrangian* if $\hat{\Sigma}^k A$ is an invertible object of $\Sigma^k \mathcal{A}$.

Theorem (KZZZ)

The following conditions are equivalent for a separable E_2 -algebra A in a nondegenerate braided fusion n -category \mathcal{A} :

Lagrangian E_k -algebras

Definition (KZZZ)

An E_k -multi-fusion n -category \mathcal{A} is *nondegenerate* if $\Sigma^k \mathcal{A}$ is an invertible object of $(n+k+1)\text{-Vec}$.

A separable E_k -algebra A in a nondegenerate E_k -multi-fusion n -category is *Lagrangian* if $\hat{\Sigma}^k A$ is an invertible object of $\Sigma^k \mathcal{A}$.

Theorem (KZZZ)

The following conditions are equivalent for a separable E_2 -algebra A in a nondegenerate braided fusion n -category \mathcal{A} :

- 1 A is Lagrangian.

Lagrangian E_k -algebras

Definition (KZZZ)

An E_k -multi-fusion n -category \mathcal{A} is *nondegenerate* if $\Sigma^k \mathcal{A}$ is an invertible object of $(n+k+1)\text{-Vec}$.

A separable E_k -algebra A in a nondegenerate E_k -multi-fusion n -category is *Lagrangian* if $\hat{\Sigma}^k A$ is an invertible object of $\Sigma^k \mathcal{A}$.

Theorem (KZZZ)

The following conditions are equivalent for a separable E_2 -algebra A in a nondegenerate braided fusion n -category \mathcal{A} :

- 1 A is Lagrangian.
- 2 $\text{Mod}_A^{E_2}(\mathcal{A})$ is trivial.