

# Alterfold Theory and Modular Invariance

Zhengwei Liu

Joint with Shuang Ming, Yilong Wang, Jinsong Wu

Tsinghua University & BIMSA

International Conference of Hopf Algebras and Tensor Categories  
Jan 20, 2026

# Outline

1 Altefold Theory

2 Modular Invariance

# Part I: Alterfold Theory

# Hopf Algebras and Tensor Categories

For a Hopf Algebra  $H$ ,  $\text{Rep}(H)$  is a tensor category.

It is called a fusion category, if it is semisimple, finite, pivotal.

Drinfeld Quantum Double:  $H \rtimes \hat{H}$

$\text{Rep}(H \rtimes \hat{H})$  is the Drinfeld Center of  $\text{Rep}(H)$ .

The Drinfeld center of a fusion category is a modular fusion category.

It produces a representation of the modular group  $PSL(2, \mathbb{Z})$ .

The  $S$ -matrix is defined by the Hopf link and the  $T$  matrix is defined by the Dehn twist.

# Topological Quantum Field Theory

Witten initiated Topological Quantum Field Theory (TQFT) and constructed a 2+1 TQFT using Chern-Simons theory and obtained an invariant of links in 3-manifolds as a path integral [**Wit89**], generalizing the Jones polynomial originated from subfactor theory [**Jon83, Jon85, Jon87**], and other link invariants from the representation theory of Drinfeld-Jimbo quantum groups [**Jim85, Dri86, HOMFLY85, PT88, Kau90**].

# Atiyah TQFT

Atiyah 88: *Quantum Physics and Topology* phenomenon emerging from the continuum limit.

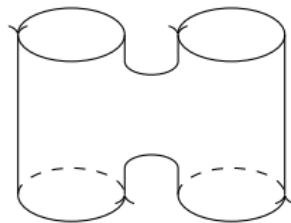
Atiyah's  $n + 1$  TQFT is defined as a symmetrical monoidal functor from **Cob** to **Vec**, which is a quantum Algebraic Topology approach to TQFT.

Object:  $n$ -manifolds without boundary  $\rightarrow$  vector spaces

Morphisms:  $n + 1$  cobordisms  $\rightarrow$  linear transformations

The TQFT is called unitary, if the partition function is reflection positive.

In this case, the (finite dimensional) vector spaces are Hilbert spaces.



$$\rightarrow \text{Hom}(V \otimes V, V \otimes V)$$

The topological invariant of Witten's 2+1 TQFT can be rigorously defined using the link invariants from quantum groups and the Lickorish-Wallace surgery theory, known as the Witten-Reshetikhin-Turaev (WRT) TQFT **[ResTur91]**.

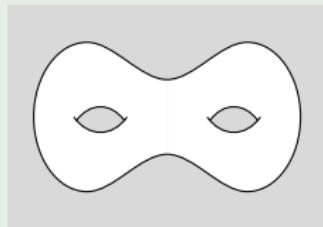
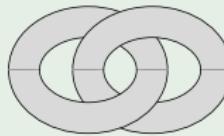
The Turaev-Viro-Barrett-Westbury (TVBW) 2+1 TQFT from a spherical fusion category **[TurVir92, BarWes96]** is a state sum construction over a triangulation.

An  $n$ -alterfold consists of

- A closed oriented  $n$ -manifold  $M$ ;
- A separating hyper surface  $S \subset M$ ;
- $S$  separate  $M$  into  $A$ - $B$  colored regions.  
( $S$  may not be connected.)



## Example



$B$ -colored handlebody in  $A$     $A$ -colored Hopf Link in  $B$

## Definition

An alterfold TQFT is a symmetric monoidal functor from the cobordism category of alterfolds to the category of vector spaces.

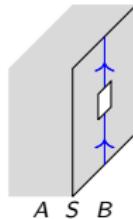
We call A-color to be trivial, if the functor is independent of the A-color manifold.

When A-color is trivial, we focus on B-color manifolds and consider the separating surface  $S$  its space boundary. In this sense, an alterfold TQFT with trivial A-color is a TQFT with space-time boundary.

It further reduces to Atiyah's TQFT if there is no space boundary.

## Theorem (L-Ming-Wang-Wu 23)

*Given a spherical fusion category  $\mathcal{C}$  (with Morita contexts), there is a unique 2+1 alterfold TQFT with  $\mathcal{C}$ -decorated separating surfaces and trivial A-color, such that the partition function of a B-color 3-disc  $D^3$  with  $\mathcal{C}$ -decorated diagram  $\Gamma$  on the space boundary  $S^2$  is the value of  $\Gamma$  in  $\mathcal{C}$ .*



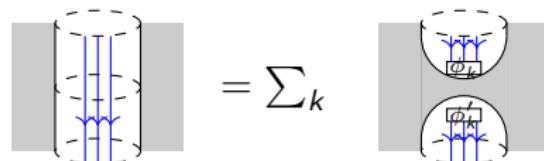
# 3D Skein Relations

Kirby Color:  $\Omega = \sum_i d_i X_i$ . Global dimension:  $\mu := d(\Omega) = \sum_i d_i^2$ .

- Local Move of  $\mathcal{C}$  on  $S$
- Move 3:



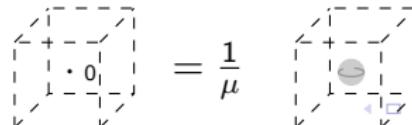
- Move 2:



- Move 1:



- Move 0:



# Tube Category and Drinfeld Center

Theorem (L-Ming-Wang-Wu 23)

The cornered handlebodies with  $A$ -color inside and  $B$ -color outside produce a modular tensor category  $\mathcal{T}$ , called the tube category of  $\mathcal{C}$ . Moreover,

$$\mathcal{T} \xrightarrow{\text{braided}} \mathcal{Z}(\mathcal{C}),$$

where  $\mathcal{Z}(\mathcal{C})$  is the Drinfeld center of  $\mathcal{C}$ .

The equivalences  $F : \mathcal{T} \rightarrow \mathcal{Z}(\mathcal{C})$  and  $G : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{T}$  are given as follows

$$F \left( \begin{array}{c} \text{A cylinder with a red dashed circle labeled } f \text{ inside, and a blue vertical line labeled } x \text{ and } y \text{ on the boundary.} \end{array} \right) = \sum_{i,j=0}^r d_i^{1/2} d_j^{1/2} \quad \text{Diagram showing a cylinder with a red dashed circle labeled } f \text{ inside, and a blue vertical line labeled } x \text{ and } y \text{ on the boundary.} \quad G \left( \begin{array}{c} \text{A cylinder with a red dashed circle labeled } f \text{ inside, and a blue vertical line labeled } x \text{ and } y \text{ on the boundary.} \end{array} \right) = \frac{1}{\mu} \quad \text{Diagram showing a cylinder with a red dashed circle labeled } f \text{ inside, and a blue vertical line labeled } x \text{ and } y \text{ on the boundary.}$$

The central diagram shows a cylinder with a red dashed circle labeled  $f$  inside, and a blue vertical line labeled  $x$  and  $y$  on the boundary. The cylinder is twisted and has blue arcs on its surface. The boundary is labeled with  $x_j^*$ ,  $x$ ,  $x_j$  at the top and  $x_i^*$ ,  $y$ ,  $x_i$  at the bottom.

# Dictionary

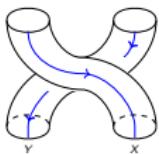
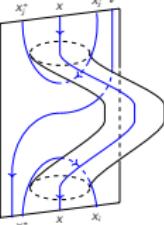
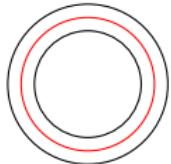
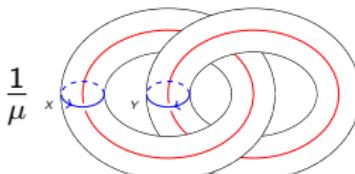
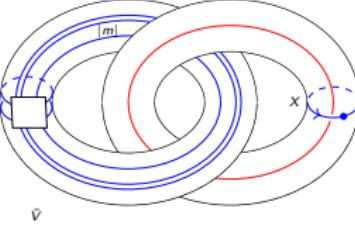
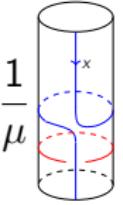
| Drinfeld Center                                                                  | Braiding                                                                                          | Half-Braiding                                                                                      | Minimal Central Idempotent                                                                          |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Tube Category                                                                    |                  | $\sum_{i,j} d_i^{1/2} d_j^{1/2}$                                                                   |                    |
| $\Omega$ -color                                                                  | S-Matrix Coefficients                                                                             | FS Indicators                                                                                      | Twist                                                                                               |
|  | $\frac{1}{\mu}$  | $\frac{1}{\mu}$  | $\frac{1}{\mu}$  |

Figure: The Dictionary for Topologized Notions

# Meanings of A/B colors

The partition function is irrelevant to the trivial  $A$ -color part, which encodes to the surgery theory in the 2+1 TQFT.



The  $B$ -color encodes the 1-dim higher center, called the bulk color. If we run the alterfold construction twice, then the  $n+2$  manifold invariants is trivial, due to the triviality of  $A$ -color. This phenomenon has been considered as the center of the center is trivial.

## Theorem (L-Ming-Wang-Wu 23)

Given a spherical fusion category  $\mathcal{C}$  (with Morita contexts), its alterfold TQFT contains both TVBW TQFT of  $\mathcal{C}$  and WRT TQFT of the Drinfeld center of  $\mathcal{C}$  in the following commuting square:

$$\begin{array}{ccc} \text{WRT TQFT} & \subset & \text{Alterfold TQFT} \\ \cup & & \cup \\ \text{Atiyah TQFT} & \subset & \text{TVBW TQFT} \end{array}$$

- TVBW TQFT:  
*blowing up the skeleton of the triangulation to B-color handles.*
- WRT TQFT:  
*blowing up the framed links to A-color handles.*

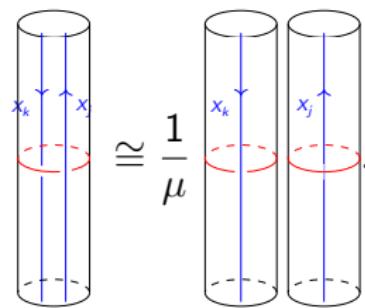
The equivalence of the two TQFTs on cobordisms were proved in

- ① Walker 91,03 Turaev 94, Robert 95 for MTC;
- ② Kawahigashi-Sato-Wakui 05 for unitary SFC;
- ③ Turaev-Virelizier 17, Balsam-Kirillov 10 for SFC.

# 2+1 Alterfold TQFT for MTC

When  $\mathcal{C}$  is a modular fusion category, its Drinfeld center

$$\mathcal{Z}(\mathcal{C}) \cong \mathcal{C} \boxtimes \mathcal{C}^{op}.$$



## Part II: Modular Invariance

# Modular Invariants

In 1987, Cappelli, Itzykson and Zuber [**CIZ87**] classified minimal conformal invariant theories based on an *ADE* classification of modular invariants of quantum  $SU_2$ . The partition function  $Z$  of a torus in CFT is expended over the characters as

$$Z = \sum_{j,k} z_{jk} \chi_j \overline{\chi_k}.$$

The coefficients  $z_{jk}$  are the anomalous dimensions and they form a matrix commuting with the modular transformations  $S$  and  $T$ . The matrix  $[z_{jk}]$  is called a modular invariant mass matrix.

$$ZS = SZ, \quad ZT = TZ.$$

The *ADE*-classification of modular invariants was inspired by an observation of V. Kac that the diagonal entries  $z_{jj}$  of a modular invariant are the Coxeter exponents of a Lie algebra.

# ADE Classification

It is remarkable that the  $A_n$ ,  $D_{2n}$ ,  $E_6$  or  $E_8$  classification of subfactors with Jones index below 4 [**Ocn88**, **GHJ89**, **BN91**, **Izu91**, **zu94**, **Kaw95**] coincides with the *ADE* classification of modular invariants of quantum  $SU_2$  from CFT.

- These *ADE* subfactors were classified by flat connections on the *ADE* Dynkin diagrams, which can be interpreted as the classification of Morita contexts  $\mathcal{D}$  [**Mug03**] of the unitary modular tensor category (UMTC)  $\mathcal{C}$  of quantum  $SU_2$ .
- For a commutative Frobenius algebra  $Q$  in a UMTC  $\mathcal{C}$ , Xu [**Xu98**] introduced  $\alpha$ -induction functors from  $\mathcal{C}$  to the Morita context  $\mathcal{D}$ , the  $(Q, Q)$ -bimodule category over  $\mathcal{C}$ . Such commutative Frobenius algebras naturally arise from conformal embeddings of quantum groups.
- Böckenhauer, Evans and Kawahigashi systematically studied the modular invariance of a commutative Frobenius algebras  $Q$  in UMTC based on  $\alpha$ -inductions in [**BE98**, **BE99**, **BE00**, **BE99b**, **BEK99**, **BEK00**].

# BEK theory

Theoretical results of Böckenhauer, Evans and Kawahigashi on modular invariants for a commutative Frobenius algebra in UMTC are summarized in **[BEK00]** as:

- ➊ Surjectivity of the  $\alpha$ -induction in  $\mathcal{D}$ ;
- ➋ The  $Z$ -matrix  $Z$  is a modular invariance;
- ➌ Characterize the matrix units of dual fusion algebra;
- ➍ The Grothendieck ring  $K_0(\mathcal{D})$  is commutative if and only if  $z_{jk} \in \{0, 1\}$ ;
- ➎ The number of simple objects in  $\mathcal{D}$  is  $Tr(ZZ^t)$ ;
- ➏ The diagonal entry  $Z_{jj}$  is the dimension of the  $j^{th}$  eigenspace of NIMrep, i.e.,  $K_0(\mathcal{C})$  acting on  $K_0(\mathcal{M})$ , where  $\mathcal{M}$  is the category of  $\mathcal{C}$ - $\mathcal{D}$  bimodules;
- ➐ The number of simple objects in  $\mathcal{M}$  is  $Tr(Z)$ .

# Main Theorems

In joint work [**L-Ming-Wang-Wu 24**] arxiv:2412.12702, we propose a topological partition function and its modular invariant theory based on the alterfold theory of a modular fusion category  $\mathcal{C}$ .

We provide streamlined quick proofs and broad generalizations of above theoretical results Böckenhauer, Evans and Kawahigashi summarized in [**BEK00**].

We generalize a recent result of Kawahigashi [**Kaw23, Kaw24**] that a Frobenius algebra in a UMTC is commutative iff its induced connection is flat.

Our results work for spherical Morita contexts of modular fusion categories over a general field, without the unitary assumption.

Additionally, we introduce the concept of double  $\alpha$ -induction for pairs of Morita contexts and define its higher-genus  $Z$ -transformation, which remains invariant under the action of the mapping class group.

We also establish a novel integral identity for modular invariance across multiple Morita contexts, unifying several known identities as special cases.

# Topological Partition Function

## Definition

For a modular fusion category  $\mathcal{C}$  and its spherical Morita context  $\mathcal{D}$ , we construct the partition function  $Z^{\mathcal{D}}$  in alterfold TQFT and define its modular invariance  $[z_{jk}]$  as

$$\text{Diagram of a parallelogram labeled } \mathcal{D} \text{ with vertices } A, B \text{ and a 'Time Boundary' at the bottom.} = \sum_{j,k} z_{jk} \frac{1}{\mu} \text{Diagram of a parallelogram with horizontal layers. The top layer is shaded orange and labeled } \mathcal{D}. \text{ The bottom layer is labeled 'Time Boundary'. Red lines and arrows indicate the layers and their connections. Vertices are labeled } A, B, x_j, x_k.$$

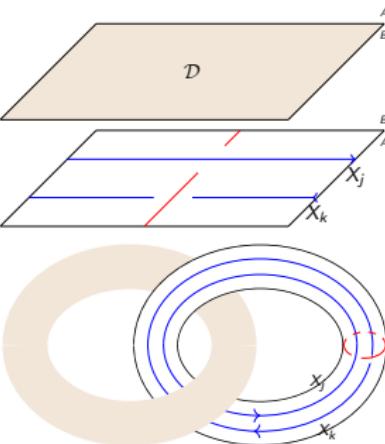
where  $\mu$  is the global dimension of  $\mathcal{C}$ .

It is a topological analogue of the CFT partition function

$$Z = \sum_{j,k} z_{jk} \chi_j \overline{\chi_k}.$$

# Topological Modular Invariance

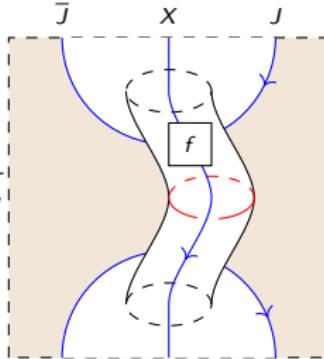
The modular invariance property of the matrix  $Z^{\mathcal{D}}$  is transparent from its topological nature. The integer entry  $z_{jk}$  is

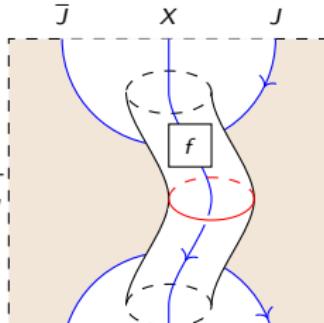
$$z_{jk} = \frac{1}{\mu^2}$$

$$= \dim \text{Hom}_{\mathcal{Z}(\mathcal{C})}(I(\mathbf{1}_{\mathcal{D}})), X_j \boxtimes X_k^{op}),$$

where  $I$  is the induction functor.

# $\alpha$ -Induction

The  $\alpha$ -induction functors  $\alpha_{\pm}$  in the alterfold TQFT:

$$\alpha_+ \left( \begin{array}{c} x \\ \downarrow \\ f \\ \downarrow \\ x \end{array} \right) = \frac{1}{d_J},$$


$$\alpha_- \left( \begin{array}{c} x \\ \downarrow \\ f \\ \downarrow \\ x \end{array} \right) = \frac{1}{d_J}.$$


(1)

Through the  $\alpha$ -induction functors, we have that

$$\begin{aligned} z_{jk}^{\mathcal{D}} &= \dim \text{Hom}_{\mathcal{Z}(\mathcal{C})}(I(\mathbf{1}_{\mathcal{D}}), X_j \boxtimes X_k^{op}) \\ &= \dim \text{Hom}_{\mathcal{D}}(\mathbf{1}_{\mathcal{D}}), F(X_j \boxtimes X_k^{op})) \\ &= \dim \text{Hom}_{\mathcal{D}}(\alpha_+(X_j), \alpha_-(X_k)). \end{aligned}$$

The equality  $z_{jk}^{\mathcal{D}} := \dim \text{Hom}_{\mathcal{D}}(\alpha_+(X_j), \alpha_-(X_k))$  was taken as the definition of the modular invariant  $Z$ -matrix in the theory of Böckenhauer-Evans-Kawahigashi. The modular invariant property is not transparent from that definition.

# Integrality

We have the following identities for modular invariants from Morita contexts, which can be applied as obstructions in the classification of Morita contexts of a modular fusion category. For example,

$$\sum_{i,j} (z_{ij}^{\mathcal{D}})^n \left(\frac{\mu}{d_i d_j}\right)^{n-2} = \frac{1}{\mu^2} \quad n : \quad \text{Diagram} = \dim \text{Hom}_{\mathcal{Z}(\mathcal{C})}(1_{\mathcal{Z}(\mathcal{C})}, I(1_{\mathcal{D}})^{\otimes n})$$

## Theorem (L-Ming-Wang-Wu 24)

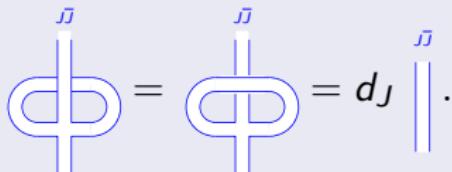
- ①  $\sum_{j,k=1}^r \prod_{s=1}^n z_{jk}^{\mathcal{D}_s} \frac{\mu^{n-2}}{d_k^{n-2} d_j^{n-2}} = \dim \text{Hom}_{\mathcal{Z}(\mathcal{C})}(\mathbf{1}_{\mathcal{Z}(\mathcal{C})}, I(\mathbf{1}_{\mathcal{D}_1}) \otimes \cdots \otimes I(\mathbf{1}_{\mathcal{D}_n})).$
- ②  $\sum_{j=1}^r \prod_{s=1}^n z_{jj}^{\mathcal{D}_s} \frac{\mu^{n-2}}{d_j^{2n-4}} = \dim \text{Hom}_{\mathcal{Z}(\mathcal{C})}(I(\mathbf{1}_{\mathcal{C}}), I(\mathbf{1}_{\mathcal{D}_1}) \otimes \cdots \otimes I(\mathbf{1}_{\mathcal{D}_n})).$
- ③  $\sum_{j=1}^r \prod_{s=1}^n z_{j1}^{\mathcal{D}_s} \frac{\mu^{n-2}}{d_j^{n-2}} = \dim \text{Hom}_{\mathcal{Z}(\mathcal{C})}\left(\sum_j G^+(X_j), I(\mathbf{1}_{\mathcal{D}_1}) \otimes \cdots \otimes I(\mathbf{1}_{\mathcal{D}_n})\right).$
- ④  $\sum_{j=1}^r \prod_{s=1}^n z_{1j}^{\mathcal{D}_s} \frac{\mu^{n-2}}{d_j^{n-2}} = \dim \text{Hom}_{\mathcal{Z}(\mathcal{C})}\left(\sum_j G^-(X_j), I(\mathbf{1}_{\mathcal{D}_1}) \otimes \cdots \otimes I(\mathbf{1}_{\mathcal{D}_n})\right).$

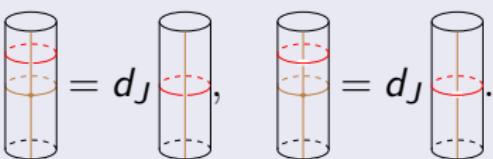
Example:  $\sum_{j,k=1}^r z_{jk}^{\mathcal{D}} z_{jk}^{\mathcal{E}}$  is the number of irreducible  $\mathcal{D} - \mathcal{E}$  bimodules.

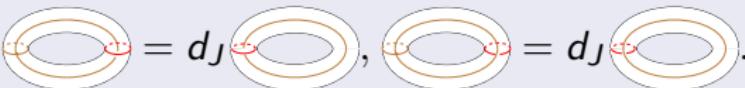
## Theorem (L-Ming-Wang-Wu 24)

Suppose that the braided fusion category  $\mathcal{C}$  is unitary and  $Q = J\bar{J}$  is a Frobenius algebra in  $\mathcal{C}$ . Then the following statements are equivalent:

(1)  $Q$  is commutative,

(2) 

(3) 

(4) 

(5) the  $\alpha$ -induced bi-unitary connection is flat.

(1)  $\iff$  (5) is the main theorem of Kawahigashi [Kaw23, Kaw24].

Our proof of (1)  $\iff$  (5) does not require the unitary condition.

## Summary and Outlook

The alterfold 2+1 TQFT provides a natural and unified framework to study various concepts in (unitary/modular) fusion categories, including Morita contexts, Drinfeld center, full center, flat connections, Frobenius algebras,  $\alpha$ -inductions, modular invariants, Lagrangian algebras, WRT TQFT, TVBW TQFT etc.

The modular invariant theory is a cornerstone in 1+1 CFT. It will be interesting to understand other topological properties of 1+1 CFT using the alterfold TQFT.

# Thank You!