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Z motivation : gapped ground states

Z physics : 1-d systems : MPS

2-d systems : PEPS

symmetries : MPO

Z (bi)categorical perspective

Z state-sum models with defects

based on

2008.11187 – with L. Lootens, J. Haegeman, C. Schweigert, F. Verstraete

2207.07031 – with C. Galindo, D. Jaklitsch, C. Schweigert

ongoing – with Y. Ogata, C. Schweigert
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Motivation
Tensor networks & bicategories

quantum many-body system :

• collection of sites with adjancency rules ( lattice of atoms/molecules )

• at each site a state space H :

finite-dimensional vector space with non-degenerate pairing H⊗H−→ k

• total state space Htot =H
⊗N with N≫ 1

• dynamics / interactions specified by a Hamilton operator H : Htot−→Htot

e.g. nearest-neighbour Heisenberg Hamiltonian

( largely immaterial in the sequel )
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Motivation
Tensor networks & bicategories

quantum many-body system :

• collection of sites with adjancency rules ( lattice of atoms/molecules )

• at each site a state space H :

finite-dimensional vector space with non-degenerate pairing H⊗H−→ k

• total state space Htot =H
⊗N with N≫ 1

• dynamics / interactions specified by a Hamilton operator H : Htot−→Htot

e.g. nearest-neighbour Heisenberg Hamiltonian

( largely immaterial in the sequel )
observation :

Z existence of gapped systems with gap between the ground state energy

(lowestH-eigenvalue) and excited-state energies persisting for N −→∞

result :

Z methods for parametrizing states in a small subspace of Htot

which e.g. give excellent approximation to the ground state
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Spin chains
Tensor networks & bicategories

1-d system : spin chain

• collection of sites : along a line

• for convenience : line ; circle ( “periodic boundary conditions” )

and translationally invariant Hamilton operator
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Spin chains
Tensor networks & bicategories

1-d system : spin chain

• collection of sites : along a line

• for convenience : line ; circle ( “periodic boundary conditions” )

tool :

• auxiliary vector space V

• D×D× d -tensor : numbers
(
Aj

)

p,q with j ∈{1, 2, ... , h=dim(H)}

and p, q∈{1, 2, ... , D=dim(V)}
• family of states

|ψ(A)〉 =
h∑

j1,j2,...,jN=1

Tr(Aj1Aj2 · · ·AjN ) |j1〉⊗ |j2〉 · · · ⊗ |jN 〉 ∈Htot

with { |j〉} a basis of H

depending on D2h≪hN =dim(Htot) parameters
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Spin chains
Tensor networks & bicategories

1-d system : spin chain

• collection of sites : along a line

• for convenience : line ; circle ( “periodic boundary conditions” )

tool :

• auxiliary vector space V

• D×D× d -tensor : numbers
(
Aj

)

p,q with j ∈{1, 2, ... , h=dim(H)}

and p, q∈{1, 2, ... , D=dim(V)}
• family of states

|ψ(A)〉 =
h∑

j1,j2,...,jN=1

Tr(Aj1Aj2 · · ·AjN ) |j1〉⊗ |j2〉 · · · ⊗ |jN 〉 ∈Htot

with { |j〉} a basis of H

graphically : |ψ(A)〉 =
A

. . .j2 jNj1

A . . . A
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Spin chains
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terminology : MPS ≡ matrix product state

result :

• MPS give efficient approximation to ground states of local gapped Hamiltonians

• MPS can be easily studied numerically

challenge :

get a conceptual handle on the subspace spanned by the MPS vectors |ψ(A)〉
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Spin chains
Tensor networks & bicategories

terminology : MPS ≡ matrix product state

result :

• MPS give efficient approximation to ground states of local gapped Hamiltonians

• MPS can be easily studied numerically

challenge :

get a conceptual handle on the subspace spanned by the MPS vectors |ψ(A)〉

alternative terminology : originating from alternative construction
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Interlude: MPS = PEPS
Tensor networks & bicategories

alternative construction :

• at each site place two D- dim degrees of freedom :

j1 j2 j3

D D D D D D

j4

D D

. . . . . .

• maximally entangle all pairs on neighboring sites :

j1 j2 j3 j4

|α〉〈α| |α〉〈α| |α〉〈α||α〉〈α| |α〉〈α|

with |α〉=
D∑

m=1

|m〉⊗ |m〉
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Interlude: MPS = PEPS
Tensor networks & bicategories

alternative construction :

• at each site place two D- dim degrees of freedom :

j1 j2 j3

D D D D D D

j4

D D

. . . . . .

• maximally entangle all pairs on neighboring sites :

j1 j2 j3 j4

|α〉〈α| |α〉〈α| |α〉〈α||α〉〈α| |α〉〈α|

• act on the pair at each site with the linear map fA : CD ⊗CD → C

h

j1 j2 j3 j4

=⇒ realize the vector |ψ(A)〉 as projected entangled pair state

JF 22 1 26 – p. 9/33



Spin chains
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result :

• MPS give efficient approximation to ground states of local gapped Hamiltonians

• MPS can be easily studied numerically

challenge :

get a conceptual handle on the subspace spanned by the MPS vectors |ψ(A)〉

terminology : MPS ≡ matrix product state /

PEPS ≡ projected entangled pair state
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Spin chains
Tensor networks & bicategories

result :

• MPS give efficient approximation to ground states of local gapped Hamiltonians

• MPS can be easily studied numerically

challenge :

get a conceptual handle on the subspace spanned by the MPS vectors |ψ(A)〉

terminology : MPS ≡ matrix product state /

PEPS ≡ projected entangled pair state

important virtue of the description as PEPS : generalizes directly to d> 1
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PEPS
Tensor networks & bicategories

2-d system :

• collection of sites : on a plane

• 2-d adjancency rules : each site with n nearest neighbors

• at each site physical state space H & n copies of auxiliary vector space V
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2-d system :

• collection of sites : on a plane

• 2-d adjancency rules : each site with n nearest neighbors

• at each site physical state space H & n copies of auxiliary vector space V

• PEPS tensor
(
Aj

)

p1,p2...pn with j ∈{1, 2, ... , h=dim(H)}

and p, ... , pn ∈{1, 2, ... , D=dim(V)}
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PEPS
Tensor networks & bicategories

2-d system :

• collection of sites : on a plane

• 2-d adjancency rules : each site with n nearest neighbors

• at each site physical state space H & n copies of auxiliary vector space V

• PEPS tensor
(
Aj

)

p1,p2...pn with j ∈{1, 2, ... , h=dim(H)}

and p, ... , pn ∈{1, 2, ... , D=dim(V)}

e.g. for square lattice

schematically :

V
V

H “sticking out”
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idea : more structure via topological symmetries

• explaining e.g. the topology-dependence of ground-state degeneracies

• naturally encoded in codimension - 1 defects
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Line defects
Tensor networks & bicategories

idea : more structure via topological symmetries

• explaining e.g. the topology-dependence of ground-state degeneracies

• naturally encoded in codimension - 1 defects

e.g. for square lattice

schematically :

VW

H

involving a further auxiliary space W

and a further tensor Bα,β
p,q

with α, β∈{1, 2, ... , dim(W)}
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Line defects
Tensor networks & bicategories

idea : more structure via topological symmetries

• explaining e.g. the topology-dependence of ground-state degeneracies

• naturally encoded in codimension - 1 defects

e.g. for square lattice

schematically :

VW

H

involving a further auxiliary space W

and a further tensor Bα,β
p,q

V

W=

=⇒ task : formalization of line defects in 2-d systems

tool : categories and bicategories
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Line defects
Tensor networks & bicategories

desirable properties of line defects

can carry point-like insertions

( defect fields )

can be fused

are oriented & can be deformed

duality amounts to orientation reversal
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desirable properties of line defects ←→ mathematical structure

can carry point-like insertions category C of defects

( defect fields )

can be fused monoidal structure on C

are oriented & can be deformed rigid dualities on C

duality amounts to orientation reversal spherical structure on C

“further QFT-motivated properties” C finitely semisimple
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Line defects
Tensor networks & bicategories

desirable properties of line defects ←→ mathematical structure

can carry point-like insertions category C of defects

( defect fields )

can be fused monoidal structure on C

are oriented & can be deformed rigid dualities on C

duality amounts to orientation reversal spherical structure on C

“further QFT-motivated properties” C finitely semisimple

( model-dependent ! ) C-linear abelian

spherical fusion category C of defects

JF 22 1 26 – p. 14/33
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Two monoidal categories
Tensor networks & bicategories

• MPO tensor

V

W= V⊗2⊗W⊗2 −→ C

• thus linear map BW(v) : W−→W for any v∈V ⊗V

terminology : MPO ≡ matrix product operator
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Two monoidal categories
Tensor networks & bicategories

• MPO tensor

V

W= V⊗2⊗W⊗2 −→ C

• thus linear map BW(v) : W−→W for any v∈V ⊗V

assume : algebra BW := 〈BW(v)〉 ⊆ End

C

(W) semisimple

=⇒ decomposition W ∼=
⊕

a∈IC

Wa

with IC = { iso classes of simpleBW -modules }
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Two monoidal categories
Tensor networks & bicategories

• MPO tensor

V

W= V⊗2⊗W⊗2 −→ C

• thus linear map BW(v) : W−→W for any v∈V ⊗V

assume : algebra BW := 〈BW(v)〉 ⊆ End

C

(W) semisimple

=⇒ decomposition W ∼=
⊕

a∈IC

Wa

with IC = { iso classes of simple objects of C }

• also linear map BV(w) : V −→V for any w∈W⊗W

assume : algebra BV := 〈BV(w)〉 ⊆ End

C

(V) semisimple

=⇒ decomposition V ∼=
⊕

α∈ID

Vα

with ID = { iso classes of simpleBV -modules }

= { iso classes of simple objects ofD }
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Two monoidal categories
Tensor networks & bicategories

• MPO tensor

V

W= + semisimplicity assumption

=⇒ substructure of V and W

encoded in two semisimple categories C and D
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Two monoidal categories
Tensor networks & bicategories

• MPO tensor

V

W= + semisimplicity assumption

=⇒ substructure of V and W

encoded in two semisimple categories C and D

• PEPS tensor

V

V

V

H

= V⊗3⊗H −→ C

specialized for convenience to hexagonal lattice
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Two monoidal categories
Tensor networks & bicategories

• MPO tensor

V

W= + semisimplicity assumption

=⇒ substructure of V and W

encoded in two semisimple categories C and D

• PEPS tensor

V

V

V

H

= V⊗3⊗H −→ C

specialized for convenience to hexagonal lattice

• fusion of defect lines + concatenation of PEPS + . . .

=⇒ C and D are fusion categories
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Two monoidal categories
Tensor networks & bicategories

• MPO tensor

V

W= + semisimplicity assumption

=⇒ substructure of V and W

encoded in two semisimple categories C and D

• PEPS tensor

V

V

V

H

= V⊗3⊗H −→ C

specialized for convenience to hexagonal lattice

• compatibility conditions :

= =

( defect lines are topological ) ( compatibility with fusion of defects )
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Bicategory
Tensor networks & bicategories

• interpretation of compatibility conditions :

pentagon identities for suitable mixed associators
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pentagon identities for suitable mixed associators

=⇒ natural setting : 2 - object bicategory :

• ◦

M

M

C D

with some C-D-bimodule category M
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Bicategory
Tensor networks & bicategories

• interpretation of compatibility conditions :

pentagon identities for suitable mixed associators

=⇒ natural setting : 2 - object bicategory :

• ◦

M

M

C D

with some C-D-bimodule category M

• minimal realization : M invertible bimodule

=⇒ 2-Morita context :

D = FunC(M,M) and M = FunC(M, C)
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Bicategory
Tensor networks & bicategories

• interpretation of compatibility conditions :

pentagon identities for suitable mixed associators

=⇒ natural setting : 2 - object bicategory :

• ◦

M

M

C D

with some C-D-bimodule category M

• minimal realization : M invertible bimodule

=⇒ 2-Morita context :

D = FunC(M,M) and M = FunC(M, C)

• lattice interpretation of M :

labeling the 2-cells of the two-dimensional canvas on which the MPO lives

JF 22 1 26 – p. 18/33
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Lattice model
Tensor networks & bicategories

Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)
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Lattice model
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Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)

• auxiliary space V =
⊕

A,B∈IM
α∈ID

HomM(A⊳α,B)

• auxiliary space W =
⊕

A,B∈IM
a∈IC

HomM(a ⊲A,B)

JF 22 1 26 – p. 20/33



Lattice model
Tensor networks & bicategories

Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)

• auxiliary space V =
⊕

A,B∈IM
α∈ID
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=⇒ 6j symbols ←→ tetrahedra
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Lattice model
Tensor networks & bicategories

Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)

• auxiliary space V =
⊕

A,B∈IM
α∈ID

HomM(A⊳α,B)

• auxiliary space W =
⊕

A,B∈IM
a∈IC

HomM(a ⊲A,B)

Z C and D spherical fusion categories

=⇒ 6j symbols ←→ tetrahedra
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Lattice model
Tensor networks & bicategories

Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)

• auxiliary space V =
⊕

A,B∈IM
α∈ID

HomM(A⊳α,B)

• auxiliary space W =
⊕

A,B∈IM
a∈IC

HomM(a ⊲A,B)

Z C and D spherical fusion categories

=⇒ 6j symbols ←→ tetrahedra

• PEPS :

βα

γ

=̂

︸︷︷︸

V
• MPO :

α

a =̂
a

α

n

j

m

k

A B

DC }

W
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Lattice model
Tensor networks & bicategories

Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)

• auxiliary space V =
⊕

A,B∈IM
α∈ID

HomM(A⊳α,B)

• auxiliary space W =
⊕

A,B∈IM
a∈IC

HomM(a ⊲A,B)

Z C and D spherical fusion categories

=⇒ 6j symbols ←→ tetrahedra

• 0
F : 6j-symbols for C as monoidal category

• 4
F : 6j-symbols for D as monoidal category

• 1
F = fusion of MPO tensors : mixed 6j-symbols for M as left C-module

• 3
F = PEPS : mixed 6j-symbols for M as right D-module

• 2
F = MPO : mixed 6j-symbols for M as bimodule
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Lattice model
Tensor networks & bicategories

Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)

• auxiliary space V =
⊕

A,B∈IM
α∈ID

HomM(A⊳α,B)

• auxiliary space W =
⊕

A,B∈IM
a∈IC

HomM(a ⊲A,B)

Z C and D spherical fusion categories

=⇒ pentagon identities including e.g.

• ((a⊗b) ⊲A) ⊳ α a ⊲ (b ⊲ (A ⊳ α))

• ((a ⊲A) ⊳ α) ⊳ β a ⊲ (A ⊳ (α⊗β))
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Lattice model
Tensor networks & bicategories

Z lattice model on hexagonal lattice in the bicategorical setting :

• physical space H =
⊕

α,β,γ∈ID

HomD(α⊗β, γ)

• auxiliary space V =
⊕

A,B∈IM
α∈ID

HomM(A⊳α,B)

• auxiliary space W =
⊕

A,B∈IM
a∈IC

HomM(a ⊲A,B)

Z C and D spherical fusion categories

=⇒ pentagon identities including e.g.

• ((a⊗b) ⊲A) ⊳ α a ⊲ (b ⊲ (A ⊳ α))
∑

o

(
2
F
fAα
B

)D,no

C,lm

(
1
F
abD
B

)E,pq

f,ko
=

∑

F,rst

(
1
F
abA
C

)F,rs

f,kl

(
2
F
aFα
B

)E,tq

C,sm

(
2
F
bAα
E

)D,np

F,rt

• ((a ⊲A) ⊳ α) ⊳ β a ⊲ (A ⊳ (α⊗β))
∑

o

(
3
F
Cαβ
B

)γ,no

D,lm

(
2
F
aAγ
B

)E,pq

C,ko
=

∑

F,rst

(
2
F
aAα
D

)F,rs

C,kl

(
2
F
aFβ
B

)E,tq

D,sm

(
3
F
Aαβ
E

)γ,np

F,rt
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Lattice model – main insights
Tensor networks & bicategories

Z PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context

• ◦

M

M

C C∗⊗opp
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Lattice model – main insights
Tensor networks & bicategories

Z PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context

• ◦

M

M

C C∗⊗opp

Z contracting a network of PEPS and MPO tensors

gives candidate ground state as element of a subspace of H⊗N

Z any indecomposable pivotal C-module M gives a PEPS

Z the PEPS for M exhibits MPO symmetries given by C∗ =FunC(M,M)

Z different choices for M amount to different ‘coordinates’ for the system

and exhibit different topological symmetries
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Lattice model – main insights
Tensor networks & bicategories

Z PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context

• ◦

M

M

C C∗⊗opp

Z contracting a network of PEPS and MPO tensors

gives candidate ground state as element of a subspace of H⊗N

Z any indecomposable pivotal C-module M gives a PEPS

Z the PEPS for M exhibits MPO symmetries given by C∗ =FunC(M,M)

Z different choices for M amount to different ‘coordinates’ for the system

and exhibit different topological symmetries

Z pivotal categorical Morita equivalence relates dual descriptions :

D=FunC(M,M) C=FunD(M,M) Z(C)=Z(D)
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2-Morita contexts
Tensor networks & bicategories

2-Morita context :

2-Morita context :

• finite multi tensor categories C and D

• bimodules CMD and DNC

• bimodule functors M⊠DN −→C and N ⊠CM−→D
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• pentagon identities for these natural transformations
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2-Morita context :

strong 2-Morita context :

• finite multi tensor categories C and D

• bimodules CMD and DNC =M

• bimodule equivalences M⊠DN −→C and N ⊠CM−→D

• two bimodule natural transformations filling a diagram for those functors

• pentagon identities for these natural transformations

Proposition :

every 2-Morita context gives a 2-object bicategory

• composition of 1-morphisms via ⊗C , ⊗D ,⊳C , ⊲C , ⊳D , ⊲D , ⊡C , ⊡D

• 16 associativity constraints

• 32 pentagon diagrams “ commuting by construction ”
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2-Morita contexts
Tensor networks & bicategories

Proposition :

• any exact module category M over a finite tensor category C

gives a strong Morita context

• this admits rigid dualities :

m∨ =HomM(m,−) internal Hom
for m∈M

∨m=coHomM(m,−) internal coHom

and similarly for M
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Proposition :

• any exact module category M over a finite tensor category C

gives a strong Morita context

• this admits rigid dualities :

m∨ =HomM(m,−) internal Hom
for m∈M

∨m=coHomM(m,−) internal coHom

and similarly for M

Z double duals given by relative Serre functors : m∨∨ =Sr

M(m)

∨∨m=Sl

M(m)

Z pivotal structure on an exact module category M over a pivotal tensor category :

natural isomorphism idM

∼=
−−→ Sr

M SCHAUMANN, SHIMIZU
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Proposition :

• any exact module category M over a finite tensor category C

gives a strong Morita context

• this admits rigid dualities :

m∨ =HomM(m,−) internal Hom
for m∈M

∨m=coHomM(m,−) internal coHom

and similarly for M

Z double duals given by relative Serre functors : m∨∨ =Sr

M(m)

Z pivotal structure on a rigid bicategory B :

pseudonatural equivalence π : idB

≃
−−→ (−)∨∨

Z spherical 2-Morita context for a spherical module category M

over a unimodular (Radford-) spherical finite tensor category :

π2 coinciding with another pseudonatural equivalence id−→ (−)∨∨∨∨

involving the relative Serre pseudofunctor S on the associated bicategory BM
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• the 2-Morita context for M is a pivotal bicategory

JF 22 1 26 – p. 26/33



2-Morita contexts
Tensor networks & bicategories

Proposition :

• any exact module category M over a finite tensor category C

gives a strong Morita context

• this admits rigid dualities :

m∨ =HomM(m,−) internal Hom
for m∈M
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Proposition :

• any exact module category M over a finite tensor category C

gives a strong Morita context

• this admits rigid dualities :

m∨ =HomM(m,−) internal Hom
for m∈M

∨m=coHomM(m,−) internal coHom

and similarly for M

Theorem : for M a pivotal module category :

• the 2-Morita context for M is a pivotal bicategory

• the internal End Hom(m,m) of any m∈M

has a natural structure of symmetric Frobenius algebra

• sphericality of the 2-Morita context captures

preservation of sphericality under pivotal 2-Morita equivalence
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goal : handle on more general lattice models including defects

tool : state-sum TFTs
TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER
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goal : handle on more general lattice models including defects

tool : state-sum TFTs
TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER

T-V TFT :

• input data : spherical fusion category D

oriented three-manifold M possibly with gluing boundaryΣ

skeleton ∆ for M ( generalized triangulation , ∆0 ∩Σ= ∅ )
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goal : handle on more general lattice models including defects

tool : state-sum TFTs
TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER

T-V TFT :

• input data : spherical fusion category D

oriented three-manifold M possibly with gluing boundaryΣ

skeleton ∆ for M

• state sum variables : simple object d∈D for each 2-cell in ∆2\Σ

• vector spaces Ve± : for each half edge ( edge e∈∆1 + end point )

Ve+
=HomD(1, d1⊗ · · ·⊗ dn) ∼= (Ve−)∗

(di state sum variables of adjacent 2-cells )
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goal : handle on more general lattice models including defects

tool : state-sum TFTs
TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER

T-V TFT :

• input data : spherical fusion category D

oriented three-manifold M possibly with gluing boundaryΣ

skeleton ∆ for M

• state sum variables : simple object d∈D for each 2-cell in ∆2\Σ

• vector spaces Ve± : for each half edge ( edge e∈∆1 + end point )

Ve+
=HomD(1, d1⊗ · · ·⊗ dn) ∼= (Ve−)∗

• vector space V∆ by tensoring Ve±’s

• apply evaluation maps obtained from graphical calculus on spheres

that surround vertices in ∆0\Σ to canonical vector in V∆⊗V
∗

∆

and sum over state sum variables

=⇒ TFT state space tftD(Σ) independent of the choice of ∆
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State-sum models for PEPS
Tensor networks & bicategories

special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0

Σ

• physical boundary Σ×{0} with specified boundary condition M
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special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0

Σ

• physical boundary Σ×{0} with specified boundary condition M

i.e. M a D -module category KITAEV-KONG

JF-SCHWEIGERT-VALENTINO
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special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0

Σ

• physical boundary Σ×{0} with specified boundary condition M

main idea :

• consider the image of 1∈C=tftD(∅)

under tftD(MΣ) : C−→ tftD(Σ)

• interpret this vector in tftD(Σ) as a state described by a PEPS tensor
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• physical boundary Σ×{0} with specified boundary condition M
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• consider the image of 1∈C=tftD(∅)
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State-sum models for PEPS
Tensor networks & bicategories

special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0

Σ

• physical boundary Σ×{0} with specified boundary condition M

main idea :

• consider the image of 1∈C=tftD(∅)

under tftD(MΣ) : C−→ tftD(Σ)

• interpret this vector in tftD(Σ) as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

A

e2 e

• state sum variables :

α∈D for faces in the interior of MΣ

A∈M for faces on Σ×{0}

• vector spaces of invariants :

Hom spaces in D for edges in the interior

Hom spaces in M for edges on Σ×{0}

JF 22 1 26 – p. 29/33



State-sum models for PEPS
Tensor networks & bicategories

special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0

Σ

• physical boundary Σ×{0} with specified boundary condition M

main idea :

• consider the image of 1∈C=tftD(∅)

under tftD(MΣ) : C−→ tftD(Σ)

• interpret this vector in tftD(Σ) as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

• state sum variables

• vector spaces of invariants

• graphical calculus on sphere around the vertex

=⇒ 6j-symbol

BA

C

α

γ

β
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special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0

Σ

• physical boundary Σ×{0} with specified boundary condition M

main idea :

• consider the image of 1∈C=tftD(∅)

under tftD(MΣ) : C−→ tftD(Σ)

• interpret this vector in tftD(Σ) as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

• state sum variables

• vector spaces of invariants

• graphical calculus on sphere around the vertex

=⇒ 6j-symbol = PEPSD,M

BA

C

α

γ
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special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0
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• physical boundary Σ×{0} with specified boundary condition M

main idea :

• consider the image of 1∈C=tftD(∅)
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State-sum models for PEPS
Tensor networks & bicategories

special case : three-manifold M = MΣ := Σ× [0, 1] with

• gluing boundary Σ×{1} with state space tftD(Σ) =: H0

Σ

• physical boundary Σ×{0} with specified boundary condition M

main idea :

• consider the image of 1∈C=tftD(∅)

under tftD(MΣ) : C−→ tftD(Σ)

• interpret this vector in tftD(Σ) as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

then indeed : tftD(MΣ)(1) = PEPSD,M

state-sum TFT provides

a holographic description of PEPS

that is independent of lattices

JF 22 1 26 – p. 29/33



Generalizations
Tensor networks & bicategories

further issues :

• inclusion of MPO symmetries :

insert defect lines on the physical boundary ( ‘boundary Wilson lines’ )

labeled by objects in FunD(M,M)=D∗ =: C
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Generalizations
Tensor networks & bicategories

further issues :

• inclusion of MPO symmetries :

insert defect lines on the physical boundary ( ‘boundary Wilson lines’ )

• can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS . . . . . .

• case M≃A-mod for A pointed considered earlier LUO-LAKE-WU

JF 22 1 26 – p. 30/33



Generalizations
Tensor networks & bicategories

further issues :

• inclusion of MPO symmetries :

insert defect lines on the physical boundary ( ‘boundary Wilson lines’ )

• can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS . . . . . .

generalizations :

• include non-trivial dynamics by sandwiching with additional physical boundary

e.g for generalized DELCAMP-ISHTIAQUE

Ising models
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insert defect lines on the physical boundary ( ‘boundary Wilson lines’ )

• can be analyzed numerically after obtaining 6j-symbols by solving pentagons
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generalizations :

• include non-trivial dynamics by sandwiching with additional physical boundary

• more general MPO symmetries : defect lines on the physical boundary

labeled by objects in FunD(M1,M2)≃M2 ⊠DM1

• more general PEPS tensors :

D1-D2-surface defect B

separating 3-cells of MΣ labeled by D1 and D2

• generalized anyons :

point insertions on defect lines
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further issues :

• inclusion of MPO symmetries :

insert defect lines on the physical boundary ( ‘boundary Wilson lines’ )

• can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS . . . . . .

generalizations :

• include non-trivial dynamics by sandwiching with additional physical boundary

• more general MPO symmetries : defect lines on the physical boundary

labeled by objects in FunD(M1,M2)≃M2 ⊠DM1

• more general PEPS tensors :

D1-D2-surface defect B

separating 3-cells of MΣ labeled by D1 and D2

• generalized anyons :

point insertions on defect lines

B3B2

B1 B4

M4

M3

M2

M1
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Outlook
Tensor networks & bicategories

messages :

• the mathematical structure of topological symmetries for PEPS is bicategorical

• T-V state-sum models with boundaries and defects are extremely useful

• tensor network techniques can provide a computational handle

on bicategorical structures
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messages :

• the mathematical structure of topological symmetries for PEPS is bicategorical

• T-V state-sum models with boundaries and defects are extremely useful

• tensor network techniques can provide a computational handle

on bicategorical structures

work in progress :

• analyze general PEPS / MPO / anyons

important tool : calculus of extruded graphs FARNSTEINER-SCHWEIGERT
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Outlook
Tensor networks & bicategories

messages :

• the mathematical structure of topological symmetries for PEPS is bicategorical

• T-V state-sum models with boundaries and defects are extremely useful

• tensor network techniques can provide a computational handle

on bicategorical structures

work in progress :

• analyze general PEPS / MPO / anyons

important tool : calculus of extruded graphs

further directions :

• non-semisimple models

( results for pivotal bicategories obtained in framework of finite tensor categories )

• non-rigid dualities

• higher dimensions ( higher fusion categories )
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THANK YOU
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