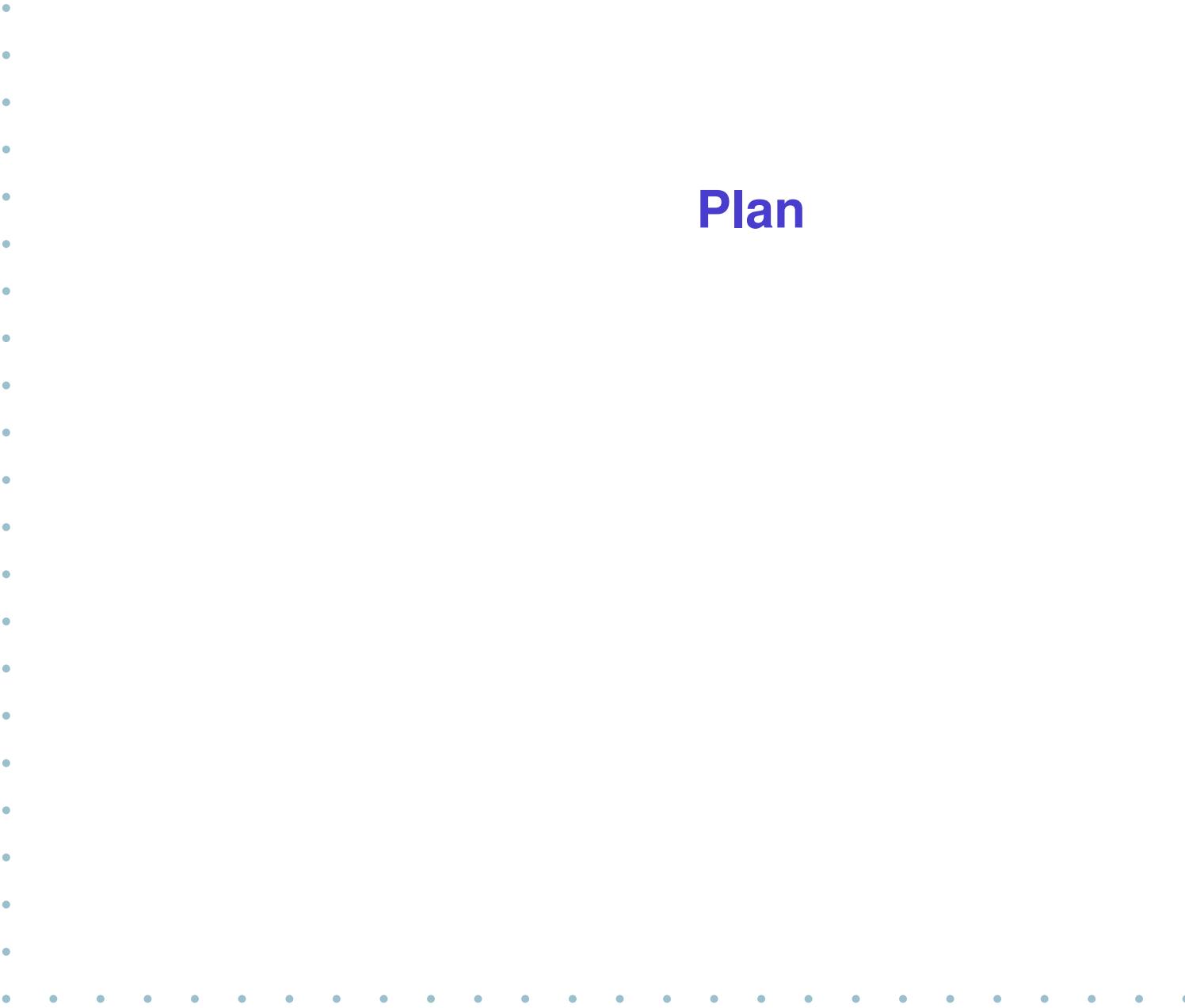


TENSOR NETWORK STATES AND SPHERICAL BICATEGORIES

Hopf Algebras and Tensor Categories

22 January 2026

Plan



motivation: gapped ground states

of quantum many-body systems

- ☞ **motivation: gapped ground states**
- ☞ **physics:** **1-d systems:** **MPS**
2-d systems: **PEPS**
- ☞ **symmetries:** **MPO**

- ☞ **motivation: gapped ground states**
- ☞ **physics:** **1-d systems:** **MPS**
2-d systems: **PEPS**
symmetries: **MPO**
- ☞ **(bi)categorical perspective**

- ☞ **motivation: gapped ground states**
- ☞ **physics:** **1-d systems:** **MPS**
2-d systems: **PEPS**
symmetries: **MPO**
- ☞ **(bi)categorical perspective**
- ☞ **state-sum models**

- ☞ **motivation: gapped ground states**
- ☞ **physics:** **1-d systems:** **MPS**
2-d systems: **PEPS**
symmetries: **MPO**
- ☞ **(bi)categorical perspective**
- ☞ **state-sum models with defects**

-
-
- **☞ motivation: gapped ground states**
-
-

- **☞ physics: 1-d systems: MPS**
- **2-d systems: PEPS**
- **symmetries: MPO**

- **☞ (bi)categorical perspective**

- **☞ state-sum models with defects**

- based on

- [2008.11187](#) – with L. Lootens, J. Haegeman, C. Schweigert, F. Verstraete

- [2207.07031](#) – with C. Galindo, D. Jaklitsch, C. Schweigert

- [ongoing](#) – with Y. Ogata, C. Schweigert

Motivation

quantum many-body system :

- collection of *sites* with adjacency rules (*lattice* of atoms/molecules)
- at each site a *state space* \mathcal{H} :
 - finite-dimensional vector space with non-degenerate pairing $\mathcal{H} \otimes \mathcal{H} \rightarrow \mathbb{k}$
- total state space $\mathcal{H}_{\text{tot}} = \mathcal{H}^{\otimes N}$ with $N \gg 1$
- dynamics/interactions specified by a *Hamilton operator* $\mathbf{H} : \mathcal{H}_{\text{tot}} \rightarrow \mathcal{H}_{\text{tot}}$
 - e.g. nearest-neighbour Heisenberg Hamiltonian
 - (largely immaterial in the sequel)

quantum many-body system :

- collection of *sites* with adjacency rules (*lattice* of atoms/molecules)
- at each site a *state space* \mathcal{H} :
 - finite-dimensional vector space with non-degenerate pairing $\mathcal{H} \otimes \mathcal{H} \rightarrow \mathbb{k}$
- total state space $\mathcal{H}_{\text{tot}} = \mathcal{H}^{\otimes N}$ with $N \gg 1$
- dynamics/interactions specified by a *Hamilton operator* $\mathbf{H} : \mathcal{H}_{\text{tot}} \rightarrow \mathcal{H}_{\text{tot}}$
 - e.g. nearest-neighbour Heisenberg Hamiltonian
 - (largely immaterial in the sequel)

observation :

- ☞ existence of *gapped systems* with gap between the ground state energy (lowest \mathbf{H} -eigenvalue) and excited-state energies persisting for $N \rightarrow \infty$

quantum many-body system :

- collection of *sites* with adjacency rules (*lattice* of atoms/molecules)
- at each site a *state space* \mathcal{H} :
 - finite-dimensional vector space with non-degenerate pairing $\mathcal{H} \otimes \mathcal{H} \rightarrow \mathbb{k}$
- total state space $\mathcal{H}_{\text{tot}} = \mathcal{H}^{\otimes N}$ with $N \gg 1$
- dynamics/interactions specified by a *Hamilton operator* $\mathbf{H} : \mathcal{H}_{\text{tot}} \rightarrow \mathcal{H}_{\text{tot}}$
 - e.g. nearest-neighbour Heisenberg Hamiltonian
 - (largely immaterial in the sequel)

observation :

- ☞ existence of *gapped systems* with gap between the ground state energy (lowest \mathbf{H} -eigenvalue) and excited-state energies persisting for $N \rightarrow \infty$

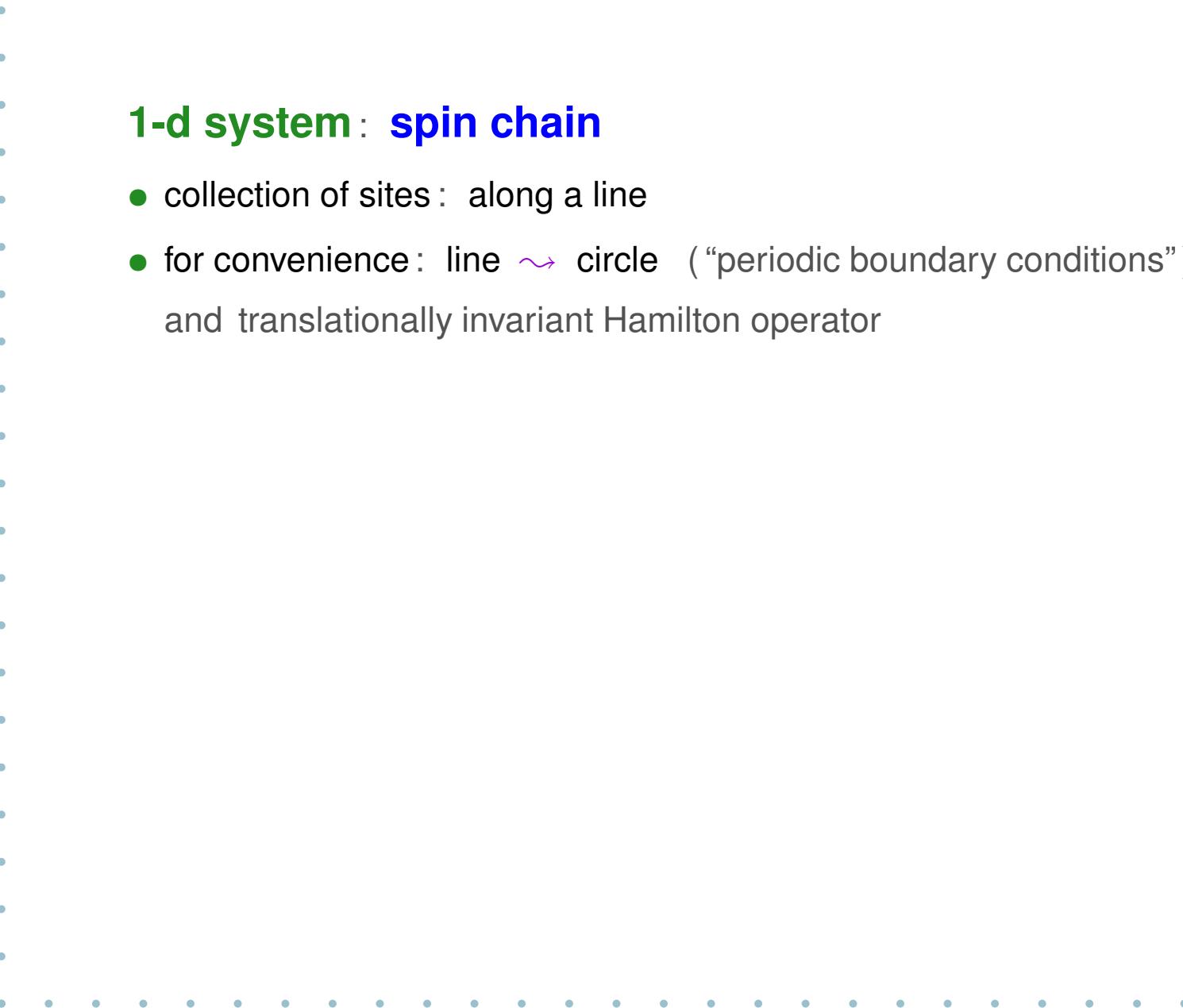
result :

- ☞ methods for parametrizing states in a small subspace of \mathcal{H}_{tot}
 - which e.g. give excellent approximation to the ground state

1-d: Spin chains

1-d system: spin chain

- collection of sites: along a line
- for convenience: line \leadsto circle (“periodic boundary conditions”) and translationally invariant Hamilton operator



1-d system: spin chain

- collection of sites: along a line
- for convenience: line \leadsto circle (“periodic boundary conditions”)

tool:

- auxiliary vector space \mathcal{V}
- $D \times D \times d$ -tensor: numbers $(A^j)_{p,q}$ with $j \in \{1, 2, \dots, h = \dim(\mathcal{H})\}$ and $p, q \in \{1, 2, \dots, D = \dim(\mathcal{V})\}$
- family of states

$$|\psi(A)\rangle = \sum_{j_1, j_2, \dots, j_N=1}^h \text{Tr}(A^{j_1} A^{j_2} \dots A^{j_N}) |j_1\rangle \otimes |j_2\rangle \dots \otimes |j_N\rangle \in \mathcal{H}_{\text{tot}}$$

with $\{ |j\rangle \}$ a basis of \mathcal{H}

depending on $D^2 h \ll h^N = \dim(\mathcal{H}_{\text{tot}})$ parameters

1-d system: spin chain

- collection of sites: along a line
- for convenience: line \rightsquigarrow circle (“periodic boundary conditions”)

tool:

- auxiliary vector space \mathcal{V}
- $D \times D \times d$ -tensor: numbers $(A^j)_{p,q}$ with $j \in \{1, 2, \dots, h = \dim(\mathcal{H})\}$ and $p, q \in \{1, 2, \dots, D = \dim(\mathcal{V})\}$
- family of states

$$|\psi(A)\rangle = \sum_{j_1, j_2, \dots, j_N=1}^h \text{Tr}(A^{j_1} A^{j_2} \dots A^{j_N}) |j_1\rangle \otimes |j_2\rangle \dots \otimes |j_N\rangle \in \mathcal{H}_{\text{tot}}$$

graphically:

$$|\psi(A)\rangle = \begin{array}{c} \text{---} \\ |A| \text{---} |A| \text{---} \dots \text{---} |A| \\ |j_1| \quad |j_2| \quad \dots \quad |j_N| \end{array}$$

with $\{ |j\rangle \}$ a basis of \mathcal{H}

• **terminology**: **MPS** \equiv matrix product state

• **result**:

- MPS give efficient approximation to ground states of local gapped Hamiltonians
- MPS can be easily studied numerically

• **challenge**:

get a *conceptual* handle on the subspace spanned by the MPS vectors $|\psi(A)\rangle$

terminology : **MPS** \equiv matrix product state

result:

- MPS give efficient approximation to ground states of local gapped Hamiltonians
- MPS can be easily studied numerically

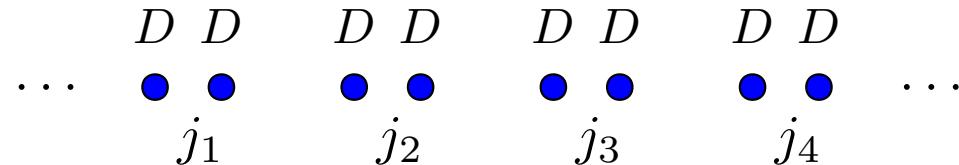
challenge:

get a *conceptual* handle on the subspace spanned by the MPS vectors $|\psi(A)\rangle$

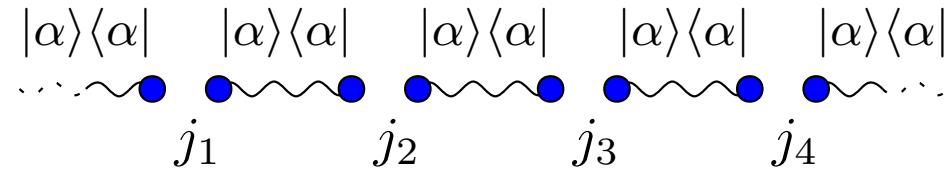
alternative terminology: originating from alternative construction

alternative construction :

- at each site place two D -dim degrees of freedom :



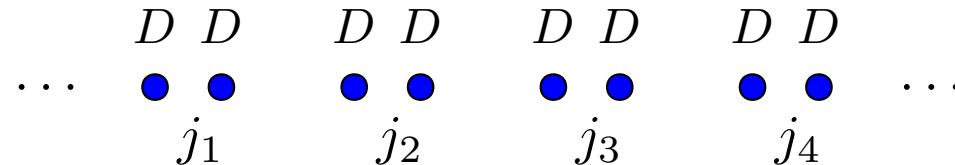
- maximally entangle* all pairs on neighboring sites :



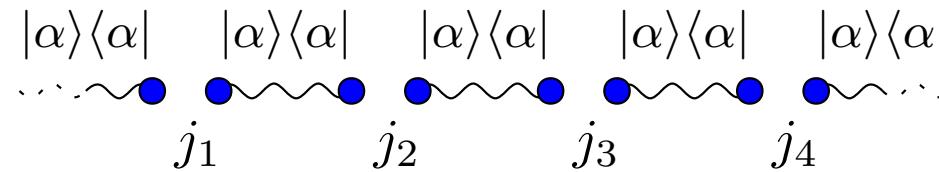
$$\text{with } |\alpha\rangle = \sum_{m=1}^D |m\rangle \otimes |m\rangle$$

alternative construction :

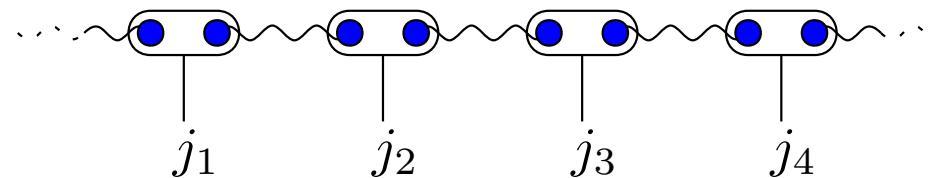
- at each site place two D -dim degrees of freedom :



- maximally entangle all pairs on neighboring sites :



- act on the pair at each site with the linear map $f_A: \mathbb{C}^D \otimes \mathbb{C}^D \rightarrow \mathbb{C}^h$



⇒ realize the vector $|\psi(A)\rangle$ as projected entangled pair state

result:

- MPS give efficient approximation to ground states of local gapped Hamiltonians
- MPS can be easily studied numerically

challenge:

get a *conceptual* handle on the subspace spanned by the MPS vectors $|\psi(A)\rangle$

terminology: **MPS** \equiv matrix product state /

PEPS \equiv projected entangled pair state

result:

- MPS give efficient approximation to ground states of local gapped Hamiltonians
- MPS can be easily studied numerically

challenge:

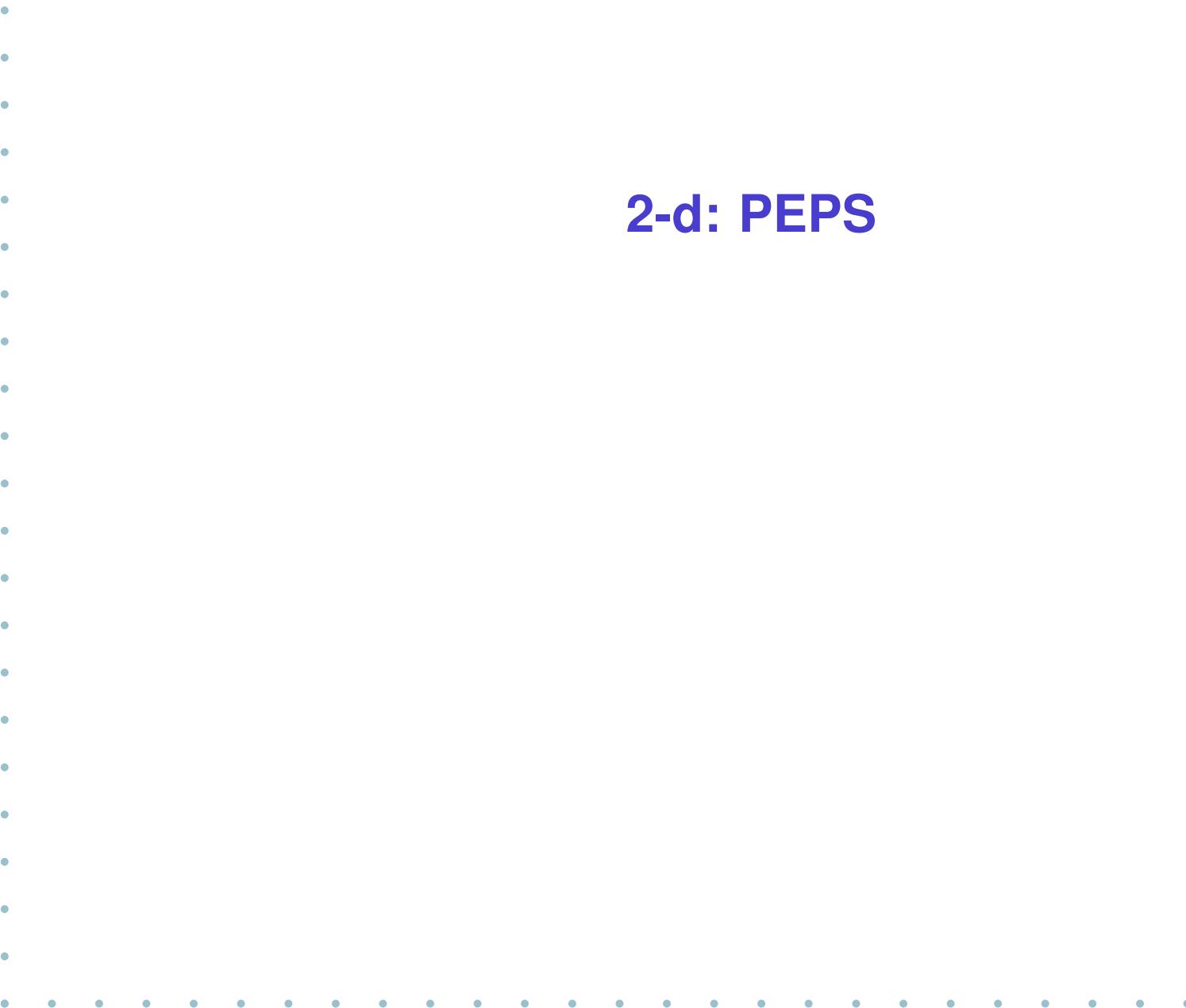
get a *conceptual* handle on the subspace spanned by the MPS vectors $|\psi(A)\rangle$

terminology: **MPS** \equiv matrix product state /

PEPS \equiv projected entangled pair state

important virtue of the description as PEPS: generalizes directly to $d > 1$

2-d: PEPS



2-d system :

- collection of sites : on a plane
- 2-d adjacency rules : each site with n nearest neighbors
- at each site physical state space \mathcal{H} & n copies of auxiliary vector space \mathcal{V}

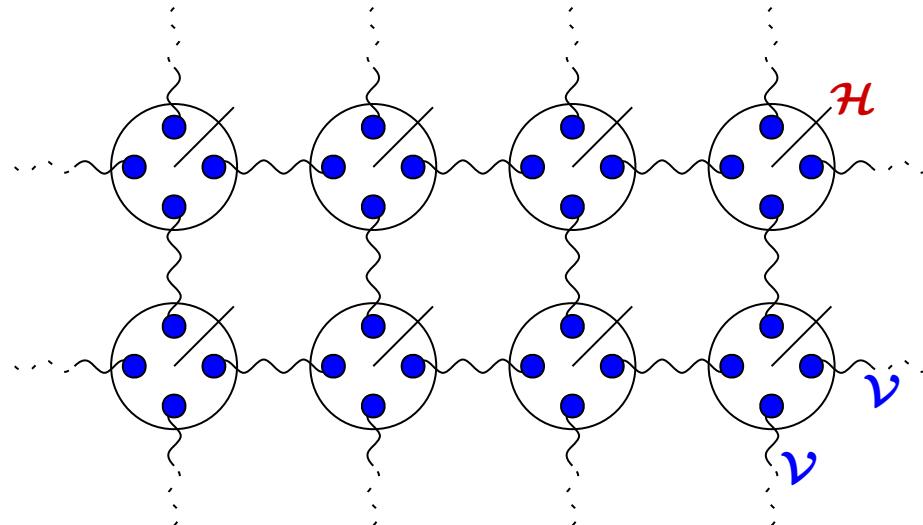
2-d system :

- collection of sites : on a plane
- 2-d adjacency rules : each site with n nearest neighbors
- at each site physical state space \mathcal{H} & n copies of auxiliary vector space \mathcal{V}
- PEPS tensor $(A^j)_{p_1, p_2 \dots p_n}$ with $j \in \{1, 2, \dots, h = \dim(\mathcal{H})\}$ and $p, \dots, p_n \in \{1, 2, \dots, D = \dim(\mathcal{V})\}$

2-d system:

- collection of sites: on a plane
- 2-d adjacency rules: each site with n nearest neighbors
- at each site physical state space \mathcal{H} & n copies of auxiliary vector space \mathcal{V}
- PEPS tensor $(A^j)_{p_1, p_2 \dots p_n}$ with $j \in \{1, 2, \dots, h = \dim(\mathcal{H})\}$ and $p, \dots, p_n \in \{1, 2, \dots, D = \dim(\mathcal{V})\}$

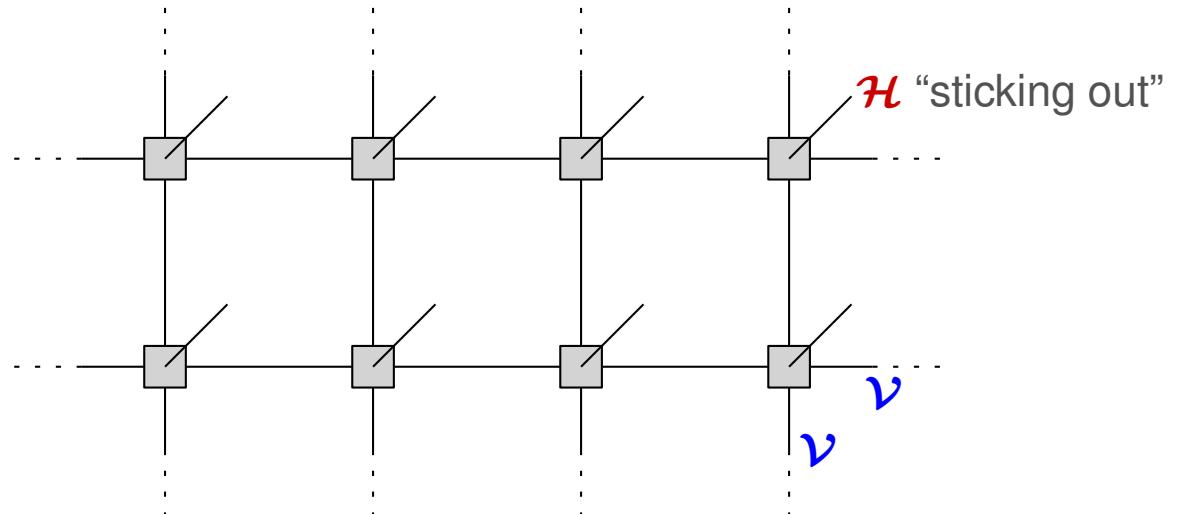
e.g. for square lattice:



2-d system :

- collection of sites : on a plane
- 2-d adjacency rules : each site with n nearest neighbors
- at each site physical state space \mathcal{H} & n copies of auxiliary vector space \mathcal{V}
- PEPS tensor $(A^j)_{p_1, p_2 \dots p_n}$ with $j \in \{1, 2, \dots, h = \dim(\mathcal{H})\}$ and $p, \dots, p_n \in \{1, 2, \dots, D = \dim(\mathcal{V})\}$

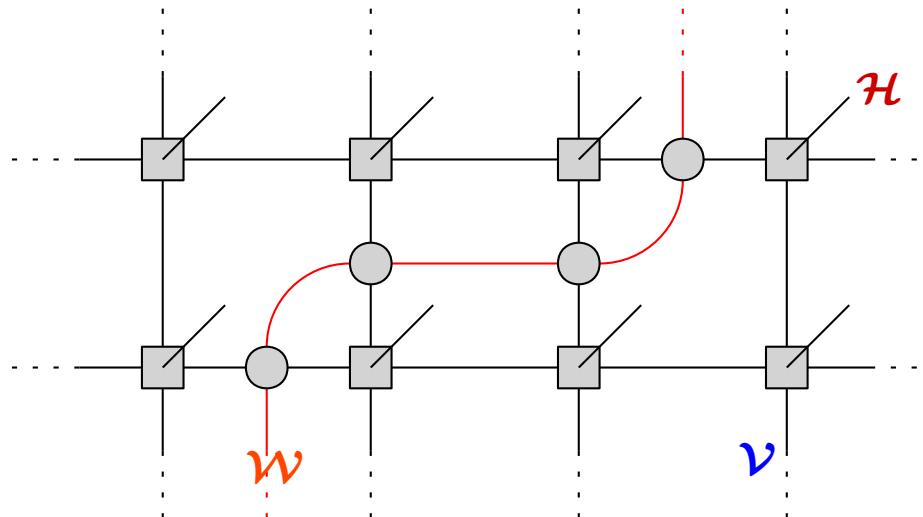
e.g. for square lattice
schematically :



idea: more structure via **topological symmetries**

- explaining e.g. the topology-dependence of ground-state degeneracies
- naturally encoded in codimension - 1 **defects**

- **idea**: more structure via **topological symmetries**
 - explaining e.g. the topology-dependence of ground-state degeneracies
 - naturally encoded in codimension - 1 **defects**
 - e.g. for square lattice
 - schematically :

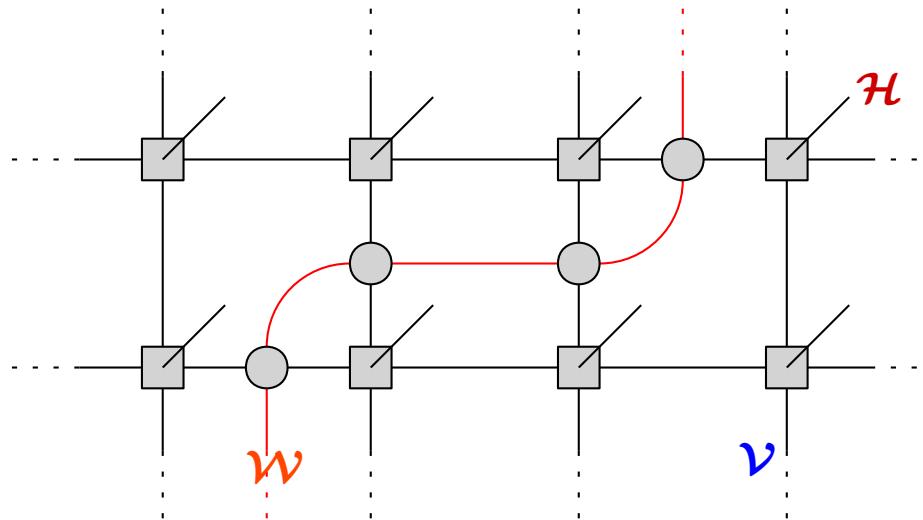


• **idea**: more structure via **topological symmetries**

- explaining e.g. the topology-dependence of ground-state degeneracies
- naturally encoded in codimension-1 **defects**

e.g. for square lattice

schematically :



involving a further **auxiliary space** \mathcal{W}

and a further tensor

$$B_{p,q}^{\alpha,\beta}$$

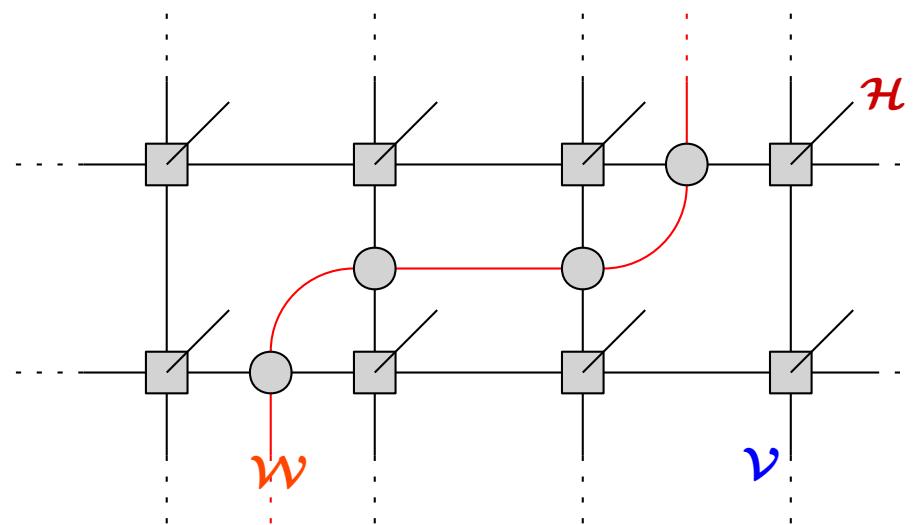
with $\alpha, \beta \in \{1, 2, \dots, \dim(\mathcal{W})\}$

idea: more structure via [topological symmetries](#)

- explaining e.g. the topology-dependence of ground-state degeneracies
- naturally encoded in codimension-1 **defects**

e.g. for square lattice

schematically :



involving a further auxiliary space \mathcal{W}

and a further tensor

$$B_{p,q}^{\alpha,\beta} = \text{Diagram with a grey circle and a red arrow pointing right, labeled } \mathcal{W}$$

⇒ **task**: formalization of line defects in 2-d systems

tool: categories and bicategories

- desirable **properties of line defects**
 - can carry point-like insertions
(*defect fields*)
 - can be fused
 - are oriented & can be deformed
 - duality amounts to orientation reversal

- desirable **properties of line defects** \longleftrightarrow **mathematical structure**
- can carry point-like insertions
(*defect fields*) category \mathcal{C} of defects
- can be fused monoidal structure on \mathcal{C}
- are oriented & can be deformed rigid dualities on \mathcal{C}
- duality amounts to orientation reversal pivotal structure on \mathcal{C}

desirable **properties of line defects** \longleftrightarrow **mathematical structure**

can carry point-like insertions
(*defect fields*)

category \mathcal{C} of defects

can be fused

monoidal structure on \mathcal{C}

are oriented & can be deformed

rigid dualities on \mathcal{C}

duality amounts to orientation reversal

spherical structure on \mathcal{C}

“further QFT-motivated properties”
(model-dependent!)

\mathcal{C} finitely semisimple
 \mathbb{C} -linear abelian

desirable **properties of line defects** \longleftrightarrow **mathematical structure**

can carry point-like insertions
(*defect fields*)

category \mathcal{C} of defects

can be fused

monoidal structure on \mathcal{C}

are oriented & can be deformed

rigid dualities on \mathcal{C}

duality amounts to orientation reversal

spherical structure on \mathcal{C}

“further QFT-motivated properties”
(model-dependent!)

\mathcal{C} finitely semisimple
 \mathbb{C} -linear abelian

spherical fusion category \mathcal{C} of defects

Bicategorical setup

- *MPO* tensor $= \begin{array}{c} \textcolor{blue}{v} \\ \uparrow \\ \textcolor{red}{w} \end{array}$ $\mathcal{V}^{\otimes 2} \otimes \mathcal{W}^{\otimes 2} \rightarrow \mathbb{C}$

- thus linear map $B_{\mathcal{W}}(v): \mathcal{W} \rightarrow \mathcal{W}$ for any $v \in \mathcal{V} \otimes \mathcal{V}$

terminology: **MPO** \equiv matrix product operator

- *MPO* tensor $= \begin{array}{c} \textcolor{blue}{v} \\ \uparrow \\ \textcolor{red}{w} \end{array}$ $\mathcal{V}^{\otimes 2} \otimes \mathcal{W}^{\otimes 2} \rightarrow \mathbb{C}$

- thus linear map $B_{\mathcal{W}}(v): \mathcal{W} \rightarrow \mathcal{W}$ for any $v \in \mathcal{V} \otimes \mathcal{V}$

assume: algebra $B_{\mathcal{W}} := \langle B_{\mathcal{W}}(v) \rangle \subseteq \text{End}_{\mathbb{C}}(\mathcal{W})$ semisimple

$$\Rightarrow \text{decomposition } \mathcal{W} \cong \bigoplus_{a \in I_{\mathcal{C}}} \mathcal{W}_a$$

with $I_{\mathcal{C}} = \{ \text{iso classes of simple } B_{\mathcal{W}}\text{-modules} \}$

- *MPO* tensor $= \begin{array}{c} \textcolor{blue}{v} \\ \uparrow \\ \textcolor{red}{w} \end{array}$ $\mathcal{V}^{\otimes 2} \otimes \mathcal{W}^{\otimes 2} \rightarrow \mathbb{C}$

- thus linear map $B_{\mathcal{W}}(v): \mathcal{W} \rightarrow \mathcal{W}$ for any $v \in \mathcal{V} \otimes \mathcal{V}$

assume: algebra $B_{\mathcal{W}} := \langle B_{\mathcal{W}}(v) \rangle \subseteq \text{End}_{\mathbb{C}}(\mathcal{W})$ semisimple

$$\Rightarrow \text{decomposition } \mathcal{W} \cong \bigoplus_{a \in I_{\mathcal{C}}} \mathcal{W}_a$$

with $I_{\mathcal{C}} = \{ \text{iso classes of simple objects of } \mathcal{C} \}$

- *MPO* tensor $= \begin{array}{c} \textcolor{blue}{v} \\ \uparrow \\ \textcolor{red}{w} \end{array}$ $\mathcal{V}^{\otimes 2} \otimes \mathcal{W}^{\otimes 2} \rightarrow \mathbb{C}$

- thus linear map $B_{\mathcal{W}}(v): \mathcal{W} \rightarrow \mathcal{W}$ for any $v \in \mathcal{V} \otimes \mathcal{V}$

assume: algebra $B_{\mathcal{W}} := \langle B_{\mathcal{W}}(v) \rangle \subseteq \text{End}_{\mathbb{C}}(\mathcal{W})$ semisimple

$$\Rightarrow \text{decomposition } \mathcal{W} \cong \bigoplus_{a \in I_{\mathcal{C}}} \mathcal{W}_a$$

with $I_{\mathcal{C}} = \{ \text{iso classes of simple objects of } \mathcal{C} \}$

- also linear map $B_{\mathcal{V}}(w): \mathcal{V} \rightarrow \mathcal{V}$ for any $w \in \mathcal{W} \otimes \mathcal{W}$

- **MPO tensor** $= \begin{array}{c} \textcolor{blue}{v} \\ \uparrow \\ \textcolor{red}{w} \end{array}$ $\mathcal{V}^{\otimes 2} \otimes \mathcal{W}^{\otimes 2} \rightarrow \mathbb{C}$

- thus linear map $B_{\mathcal{W}}(v): \mathcal{W} \rightarrow \mathcal{W}$ for any $v \in \mathcal{V} \otimes \mathcal{V}$

assume: algebra $B_{\mathcal{W}} := \langle B_{\mathcal{W}}(v) \rangle \subseteq \text{End}_{\mathbb{C}}(\mathcal{W})$ semisimple

$$\Rightarrow \text{decomposition } \mathcal{W} \cong \bigoplus_{a \in I_{\mathcal{C}}} \mathcal{W}_a$$

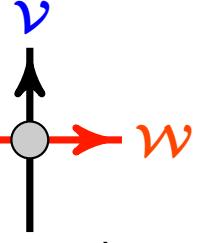
with $I_{\mathcal{C}} = \{ \text{iso classes of simple objects of } \mathcal{C} \}$

- also linear map $B_{\mathcal{V}}(w): \mathcal{V} \rightarrow \mathcal{V}$ for any $w \in \mathcal{W} \otimes \mathcal{W}$

assume: algebra $B_{\mathcal{V}} := \langle B_{\mathcal{V}}(w) \rangle \subseteq \text{End}_{\mathbb{C}}(\mathcal{V})$ semisimple

$$\Rightarrow \text{decomposition } \mathcal{V} \cong \bigoplus_{\alpha \in I_{\mathcal{D}}} \mathcal{V}_{\alpha}$$

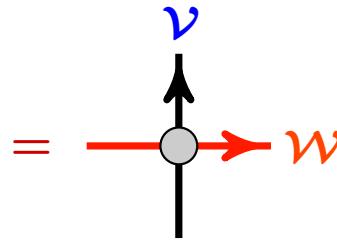
with $I_{\mathcal{D}} = \{ \text{iso classes of simple } B_{\mathcal{V}}\text{-modules} \}$
 $= \{ \text{iso classes of simple objects of } \mathcal{D} \}$

- *MPO* tensor $=$ 

+ semisimplicity assumption

\implies substructure of \mathcal{V} and \mathcal{W}
encoded in two semisimple categories \mathcal{C} and \mathcal{D}

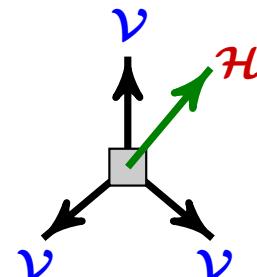
- *MPO* tensor



+ semisimplicity assumption

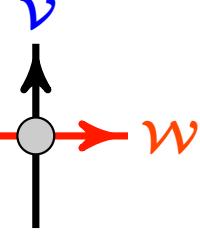
⇒ substructure of v and w
encoded in two semisimple categories C and D

- *PEPS* tensor

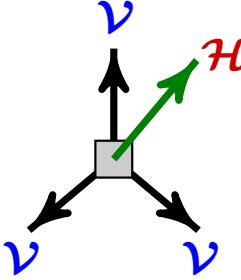


$v^{\otimes 3} \otimes h \rightarrow \mathbb{C}$

specialized for convenience to hexagonal lattice

- MPO tensor $=$ 

\implies substructure of \mathcal{V} and \mathcal{W}
encoded in two semisimple categories \mathcal{C} and \mathcal{D}

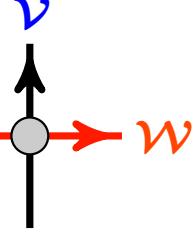
- PEPS tensor $=$ 

$$\mathcal{V}^{\otimes 3} \otimes \mathcal{H} \rightarrow \mathbb{C}$$

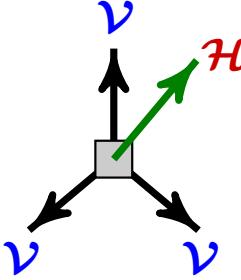
specialized for convenience to hexagonal lattice

- fusion of defect lines + concatenation of PEPS + ...

$\implies \mathcal{C}$ and \mathcal{D} are *fusion* categories

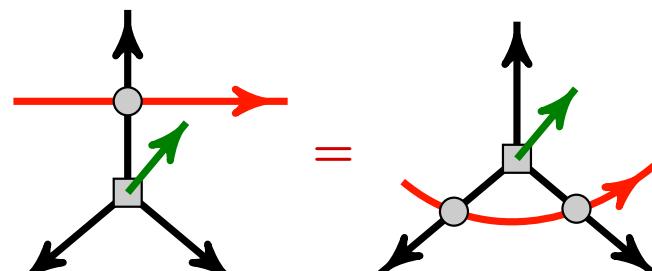
- **MPO tensor** $=$  \mathcal{W} + semisimplicity assumption

\implies substructure of \mathcal{V} and \mathcal{W}
encoded in two semisimple categories \mathcal{C} and \mathcal{D}

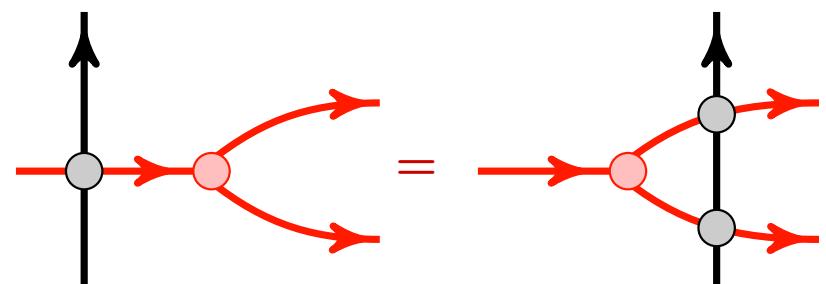
- **PEPS tensor** $=$  $\mathcal{V}^{\otimes 3} \otimes \mathcal{H} \rightarrow \mathbb{C}$

specialized for convenience to hexagonal lattice

- **compatibility conditions :**



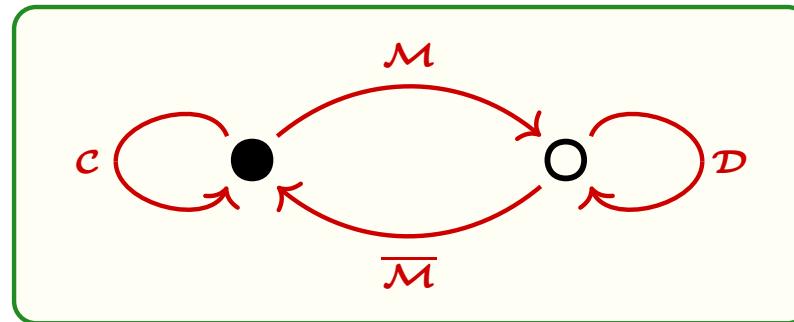
(defect lines are *topological*)



(compatibility with fusion of defects)

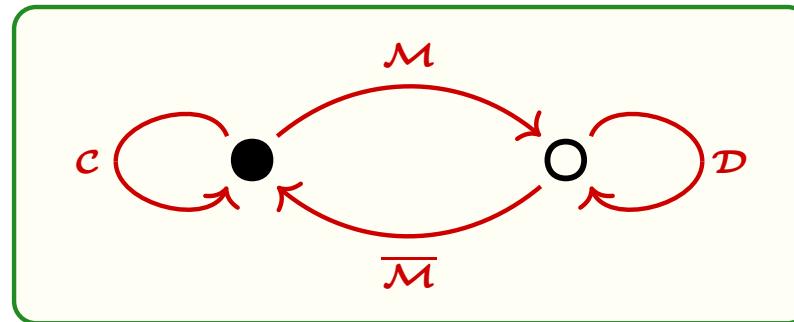
- interpretation of compatibility conditions :
pentagon identities for suitable mixed associators

- interpretation of compatibility conditions :
pentagon identities for suitable mixed associators
- ⇒ natural setting: 2-object bicategory :



with some C - D -bimodule category M

- interpretation of compatibility conditions :
pentagon identities for suitable mixed associators
- ⇒ natural setting: 2-object bicategory :

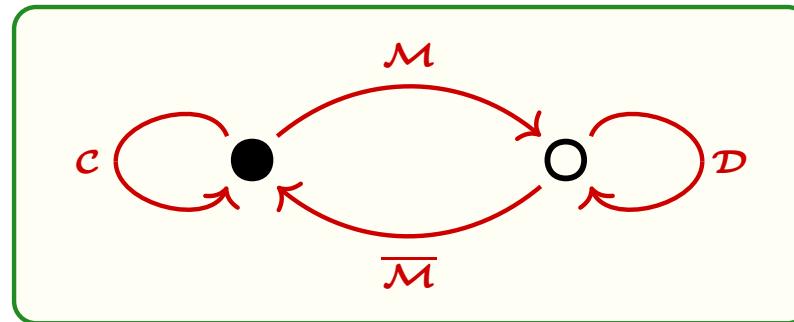


with some \mathcal{C} - \mathcal{D} -bimodule category \mathcal{M}

- minimal realization : \mathcal{M} *invertible* bimodule
- ⇒ 2-Morita context :

$$\mathcal{D} = \mathcal{F}unc(\mathcal{M}, \mathcal{M}) \quad \text{and} \quad \overline{\mathcal{M}} = \mathcal{F}unc(\mathcal{M}, \mathcal{C})$$

- interpretation of compatibility conditions :
pentagon identities for suitable mixed associators
- ⇒ natural setting: 2-object bicategory :



with some \mathcal{C} - \mathcal{D} -bimodule category \mathcal{M}

- minimal realization : \mathcal{M} *invertible* bimodule
 - ⇒ 2-Morita context :
 - $\mathcal{D} = \mathcal{F}unc(\mathcal{M}, \mathcal{M})$ and $\overline{\mathcal{M}} = \mathcal{F}unc(\mathcal{M}, \mathcal{C})$
- lattice interpretation of \mathcal{M} :
labeling the 2-cells of the two-dimensional canvas on which the MPO lives

Lattice model

- lattice model on hexagonal lattice in the bicategorical setting :

- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \mathbf{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

• lattice model on hexagonal lattice in the bicategorical setting :

- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \text{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

- auxiliary space $\mathcal{V} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ \alpha \in I_{\mathcal{D}}}} \text{Hom}_{\mathcal{M}}(A \triangleleft \alpha, B)$

- auxiliary space $\mathcal{W} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ a \in I_{\mathcal{C}}}} \text{Hom}_{\mathcal{M}}(a \triangleright A, B)$

- ☞ lattice model on hexagonal lattice in the bicategorical setting :

- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \text{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

- auxiliary space $\mathcal{V} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ \alpha \in I_{\mathcal{D}}}} \text{Hom}_{\mathcal{M}}(A \triangleleft \alpha, B)$

- auxiliary space $\mathcal{W} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ a \in I_{\mathcal{C}}}} \text{Hom}_{\mathcal{M}}(a \triangleright A, B)$

- ☞ \mathcal{C} and \mathcal{D} spherical fusion categories

\implies 6j symbols \longleftrightarrow tetrahedra

- lattice model on hexagonal lattice in the bicategorical setting :

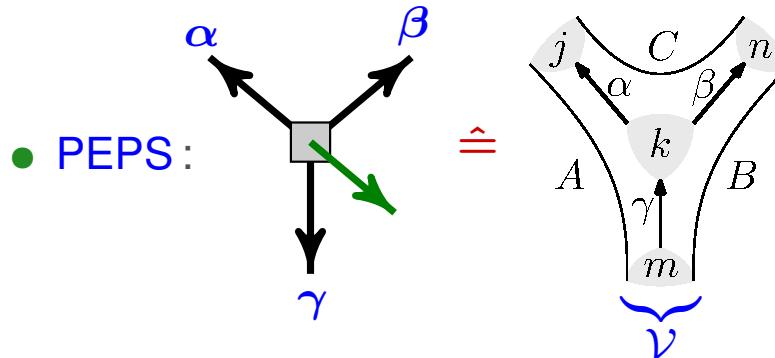
- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \text{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

- auxiliary space $\mathcal{V} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ \alpha \in I_{\mathcal{D}}}} \text{Hom}_{\mathcal{M}}(A \triangleleft \alpha, B)$

- auxiliary space $\mathcal{W} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ a \in I_{\mathcal{C}}}} \text{Hom}_{\mathcal{M}}(a \triangleright A, B)$

- \mathcal{C} and \mathcal{D} spherical fusion categories

⇒ 6j symbols \longleftrightarrow tetrahedra



- lattice model on hexagonal lattice in the bicategorical setting :

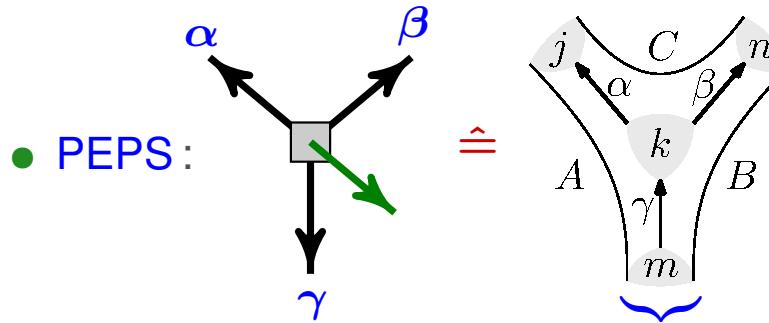
- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \text{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

- auxiliary space $\mathcal{V} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ \alpha \in I_{\mathcal{D}}}} \text{Hom}_{\mathcal{M}}(A \triangleleft \alpha, B)$

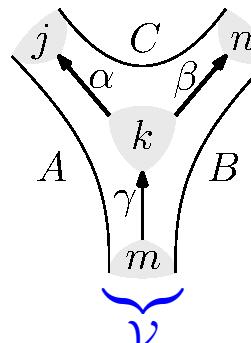
- auxiliary space $\mathcal{W} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ a \in I_{\mathcal{C}}}} \text{Hom}_{\mathcal{M}}(a \triangleright A, B)$

- \mathcal{C} and \mathcal{D} spherical fusion categories

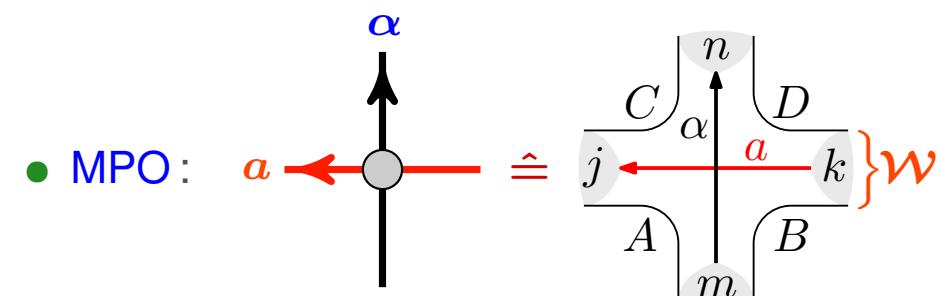
\Rightarrow 6j symbols \longleftrightarrow tetrahedra



$\hat{=}$



- MPO:



- ☞ lattice model on hexagonal lattice in the bicategorical setting :

- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \text{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

- auxiliary space $\mathcal{V} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ \alpha \in I_{\mathcal{D}}}} \text{Hom}_{\mathcal{M}}(A \triangleleft \alpha, B)$

- auxiliary space $\mathcal{W} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ a \in I_{\mathcal{C}}}} \text{Hom}_{\mathcal{M}}(a \triangleright A, B)$

- ☞ \mathcal{C} and \mathcal{D} spherical fusion categories

- \Rightarrow 6j symbols \longleftrightarrow tetrahedra

- ${}^0\mathbf{F}$: 6j-symbols for \mathcal{C} as monoidal category

- ${}^4\mathbf{F}$: 6j-symbols for \mathcal{D} as monoidal category

- ${}^1\mathbf{F} =$ fusion of MPO tensors : mixed 6j-symbols for \mathcal{M} as left \mathcal{C} -module

- ${}^3\mathbf{F} =$ PEPS : mixed 6j-symbols for \mathcal{M} as right \mathcal{D} -module

- ${}^2\mathbf{F} =$ MPO : mixed 6j-symbols for \mathcal{M} as bimodule

- lattice model on hexagonal lattice in the bicategorical setting :

- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \text{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

- auxiliary space $\mathcal{V} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ \alpha \in I_{\mathcal{D}}}} \text{Hom}_{\mathcal{M}}(A \triangleleft \alpha, B)$

- auxiliary space $\mathcal{W} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ a \in I_{\mathcal{C}}}} \text{Hom}_{\mathcal{M}}(a \triangleright A, B)$

- \mathcal{C} and \mathcal{D} spherical fusion categories

⇒ pentagon identities including e.g.

- $((a \otimes b) \triangleright A) \triangleleft \alpha \xrightarrow{\quad} \xrightarrow{\quad} \xrightarrow{\quad} a \triangleright (b \triangleright (A \triangleleft \alpha))$

- $((a \triangleright A) \triangleleft \alpha) \triangleleft \beta \xrightarrow{\quad} \xrightarrow{\quad} \xrightarrow{\quad} a \triangleright (A \triangleleft (\alpha \otimes \beta))$

- lattice model on hexagonal lattice in the bicategorical setting :

- physical space $\mathcal{H} = \bigoplus_{\alpha, \beta, \gamma \in I_{\mathcal{D}}} \text{Hom}_{\mathcal{D}}(\alpha \otimes \beta, \gamma)$

- auxiliary space $\mathcal{V} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ \alpha \in I_{\mathcal{D}}}} \text{Hom}_{\mathcal{M}}(A \triangleleft \alpha, B)$

- auxiliary space $\mathcal{W} = \bigoplus_{\substack{A, B \in I_{\mathcal{M}} \\ a \in I_{\mathcal{C}}}} \text{Hom}_{\mathcal{M}}(a \triangleright A, B)$

- \mathcal{C} and \mathcal{D} spherical fusion categories

⇒ pentagon identities including e.g.

- $((a \otimes b) \triangleright A) \triangleleft \alpha \xrightarrow{\quad} \xrightarrow{\quad} \xrightarrow{\quad} a \triangleright (b \triangleright (A \triangleleft \alpha))$

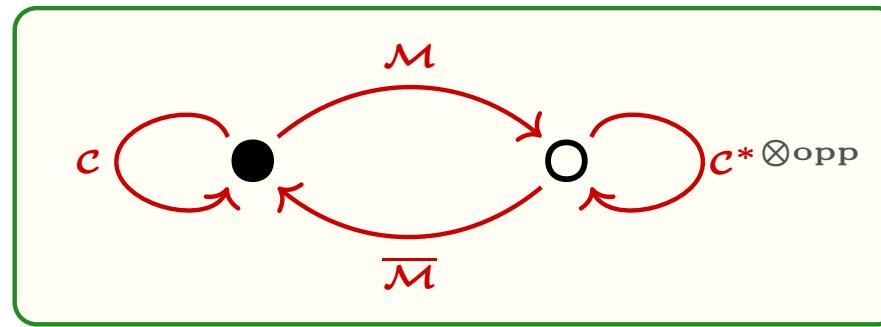
$$\sum_o ({}^2\mathsf{F}_B^{fA\alpha})_{C,lm}^{D,no} ({}^1\mathsf{F}_B^{abD})_{f,ko}^{E,pq} = \sum_{F,rst} ({}^1\mathsf{F}_C^{abA})_{f,kl}^{F,rs} ({}^2\mathsf{F}_B^{aF\alpha})_{C,sm}^{E,tq} ({}^2\mathsf{F}_E^{bA\alpha})_{F,rt}^{D,np}$$

- $((a \triangleright A) \triangleleft \alpha) \triangleleft \beta \xrightarrow{\quad} \xrightarrow{\quad} \xrightarrow{\quad} a \triangleright (A \triangleleft (\alpha \otimes \beta))$

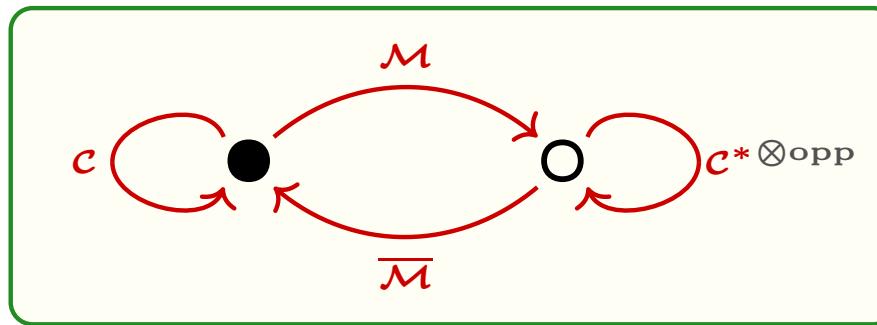
$$\sum_o ({}^3\mathsf{F}_B^{C\alpha\beta})_{D,lm}^{\gamma,no} ({}^2\mathsf{F}_B^{aA\gamma})_{C,ko}^{E,pq} = \sum_{F,rst} ({}^2\mathsf{F}_D^{aA\alpha})_{C,kl}^{F,rs} ({}^2\mathsf{F}_B^{aF\beta})_{D,sm}^{E,tq} ({}^3\mathsf{F}_E^{A\alpha\beta})_{F,rt}^{\gamma,np}$$

Lattice model – main insights

- PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context

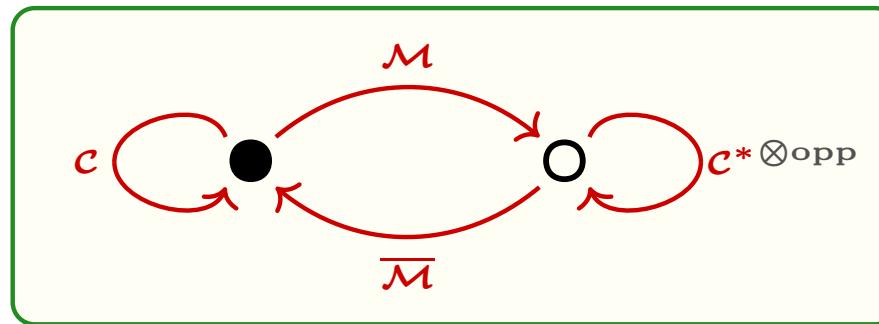


- PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context



- contracting a network of PEPS and MPO tensors gives candidate ground state as element of a subspace of $\mathcal{H}^{\otimes N}$
- any indecomposable pivotal \mathcal{C} -module \mathcal{M} gives a PEPS
- the PEPS for \mathcal{M} exhibits MPO symmetries given by $\mathcal{C}^* = \text{Func}(\mathcal{M}, \mathcal{M})$
- different choices for \mathcal{M} amount to different ‘coordinates’ for the system and exhibit different topological symmetries

- PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context



- contracting a network of PEPS and MPO tensors gives candidate ground state as element of a subspace of $\mathcal{H}^{\otimes N}$
- any indecomposable pivotal \mathcal{C} -module \mathcal{M} gives a PEPS
- the PEPS for \mathcal{M} exhibits MPO symmetries given by $\mathcal{C}^* = \mathcal{F}un_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$
- different choices for \mathcal{M} amount to different ‘coordinates’ for the system and exhibit different topological symmetries
- pivotal categorical Morita equivalence relates dual descriptions :

$$\mathcal{D} = \mathcal{F}un_{\mathcal{C}}(\mathcal{M}, \mathcal{M}) \quad \mathcal{C} = \mathcal{F}un_{\mathcal{D}}(\mathcal{M}, \mathcal{M}) \quad \mathcal{Z}(\mathcal{C}) = \mathcal{Z}(\mathcal{D})$$

2-Morita contexts

2-Morita context :

2-Morita context :

- finite multi tensor categories \mathcal{C} and \mathcal{D}
- bimodules ${}_c\mathcal{M}_D$ and ${}_D\mathcal{N}_c$
- bimodule functors $\mathcal{M} \otimes_{\mathcal{D}} \mathcal{N} \rightarrow \mathcal{C}$ and $\mathcal{N} \otimes_{\mathcal{C}} \mathcal{M} \rightarrow \mathcal{D}$
- two bimodule natural transformations filling a diagram for those functors
- pentagon identities for these natural transformations

2-Morita context :

strong 2-Morita context :

- finite multi tensor categories \mathcal{C} and \mathcal{D}
- bimodules ${}_C\mathcal{M}_D$ and ${}_D\mathcal{N}_C = \overline{\mathcal{M}}$
- bimodule equivalences $\mathcal{M} \otimes_D \mathcal{N} \rightarrow \mathcal{C}$ and $\mathcal{N} \otimes_C \mathcal{M} \rightarrow \mathcal{D}$
- two bimodule natural transformations filling a diagram for those functors
- pentagon identities for these natural transformations

2-Morita context :

strong 2-Morita context :

- finite multi tensor categories \mathcal{C} and \mathcal{D}
- bimodules $c\mathcal{M}_{\mathcal{D}}$ and ${}_{\mathcal{D}}\mathcal{N}c = \overline{\mathcal{M}}$
- bimodule equivalences $\mathcal{M} \otimes_{\mathcal{D}} \mathcal{N} \rightarrow \mathcal{C}$ and $\mathcal{N} \otimes_{\mathcal{C}} \mathcal{M} \rightarrow \mathcal{D}$
- two bimodule natural transformations filling a diagram for those functors
- pentagon identities for these natural transformations

Proposition :

every 2-Morita context gives a 2-object bicategory

2-Morita context :

strong 2-Morita context :

- finite multi tensor categories \mathcal{C} and \mathcal{D}
- bimodules $\mathcal{C}\mathcal{M}_{\mathcal{D}}$ and $\mathcal{D}\mathcal{N}_{\mathcal{C}} = \overline{\mathcal{M}}$
- bimodule equivalences $\mathcal{M} \otimes_{\mathcal{D}} \mathcal{N} \rightarrow \mathcal{C}$ and $\mathcal{N} \otimes_{\mathcal{C}} \mathcal{M} \rightarrow \mathcal{D}$
- two bimodule natural transformations filling a diagram for those functors
- pentagon identities for these natural transformations

Proposition :

every 2-Morita context gives a 2-object bicategory

- composition of 1-morphisms via $\otimes_{\mathcal{C}}, \otimes_{\mathcal{D}}, \triangleleft_{\mathcal{C}}, \triangleright_{\mathcal{C}}, \triangleleft_{\mathcal{D}}, \triangleright_{\mathcal{D}}, \boxdot_{\mathcal{C}}, \boxdot_{\mathcal{D}}$
- 16 associativity constraints
- 32 pentagon diagrams “commuting by construction”

Proposition :

- any exact module category \mathcal{M} over a finite tensor category \mathcal{C} gives a strong Morita context
- this admits rigid dualities :

$m^\vee = \underline{\text{Hom}}_{\mathcal{M}}(m, -)$ internal Hom

${}^\vee m = \underline{\text{coHom}}_{\mathcal{M}}(m, -)$ internal coHom

for $m \in \mathcal{M}$

and similarly for $\overline{\mathcal{M}}$

Proposition :

- any exact module category \mathcal{M} over a finite tensor category \mathcal{C} gives a strong Morita context
- this admits rigid dualities :

$$m^\vee = \underline{\text{Hom}}_{\mathcal{M}}(m, -) \quad \text{internal Hom}$$

$${}^\vee m = \underline{\text{coHom}}_{\mathcal{M}}(m, -) \quad \text{internal coHom}$$

for $m \in \mathcal{M}$

and similarly for $\overline{\mathcal{M}}$

- double duals given by **relative Serre functors** : $m^{\vee\vee} = S_{\mathcal{M}}^r(m)$
 $\vee\vee m = S_{\mathcal{M}}^l(m)$

- pivotal structure** on an exact module category \mathcal{M} over a pivotal tensor category :

natural isomorphism $\text{id}_{\mathcal{M}} \xrightarrow{\cong} S_{\mathcal{M}}^r$

SCHAUMANN, SHIMIZU

Proposition :

- any exact module category \mathcal{M} over a finite tensor category \mathcal{C} gives a strong Morita context
- this admits rigid dualities :

$m^\vee = \underline{\text{Hom}}_{\mathcal{M}}(m, -)$ internal Hom

${}^\vee m = \underline{\text{coHom}}_{\mathcal{M}}(m, -)$ internal coHom

for $m \in \mathcal{M}$

and similarly for $\overline{\mathcal{M}}$

☞ double duals given by relative Serre functors : $m^{\vee\vee} = S_{\mathcal{M}}^r(m)$

☞ pivotal structure on a rigid bicategory \mathcal{B} :

pseudonatural equivalence

$$\pi: \text{id}_{\mathcal{B}} \xrightarrow{\sim} (-)^{\vee\vee}$$

☞ spherical 2-Morita context for a spherical module category \mathcal{M}

over a unimodular (Radford-) spherical finite tensor category :

π^2 coinciding with another pseudonatural equivalence $\text{id} \rightarrow (-)^{\vee\vee\vee\vee}$

involving the relative Serre pseudofunctor \mathbb{S} on the associated bicategory $\mathcal{B}_{\mathcal{M}}$

Proposition :

- any exact module category \mathcal{M} over a finite tensor category \mathcal{C} gives a strong Morita context
- this admits rigid dualities :

$m^\vee = \underline{\text{Hom}}_{\mathcal{M}}(m, -)$ internal Hom

${}^\vee m = \underline{\text{coHom}}_{\mathcal{M}}(m, -)$ internal coHom

for $m \in \mathcal{M}$

and similarly for $\overline{\mathcal{M}}$

Theorem : for \mathcal{M} a pivotal module category :

- the 2-Morita context for \mathcal{M} is a pivotal bicategory

Proposition :

- any exact module category \mathcal{M} over a finite tensor category \mathcal{C} gives a strong Morita context
- this admits rigid dualities :

$m^\vee = \underline{\text{Hom}}_{\mathcal{M}}(m, -)$ internal Hom

${}^\vee m = \underline{\text{coHom}}_{\mathcal{M}}(m, -)$ internal coHom

for $m \in \mathcal{M}$

and similarly for $\overline{\mathcal{M}}$

Theorem : for \mathcal{M} a pivotal module category :

- the 2-Morita context for \mathcal{M} is a pivotal bicategory
- the internal End $\underline{\text{Hom}}(m, m)$ of any $m \in \mathcal{M}$ has a natural structure of symmetric Frobenius algebra

Proposition :

- any exact module category \mathcal{M} over a finite tensor category \mathcal{C} gives a strong Morita context
- this admits rigid dualities :

$m^\vee = \underline{\text{Hom}}_{\mathcal{M}}(m, -)$ internal Hom

$\vee m = \underline{\text{coHom}}_{\mathcal{M}}(m, -)$ internal coHom

for $m \in \mathcal{M}$

and similarly for $\overline{\mathcal{M}}$

Theorem : for \mathcal{M} a pivotal module category :

- the 2-Morita context for \mathcal{M} is a pivotal bicategory
- the internal End $\underline{\text{Hom}}(m, m)$ of any $m \in \mathcal{M}$ has a natural structure of symmetric Frobenius algebra
- sphericity of the 2-Morita context captures preservation of sphericity under pivotal 2-Morita equivalence

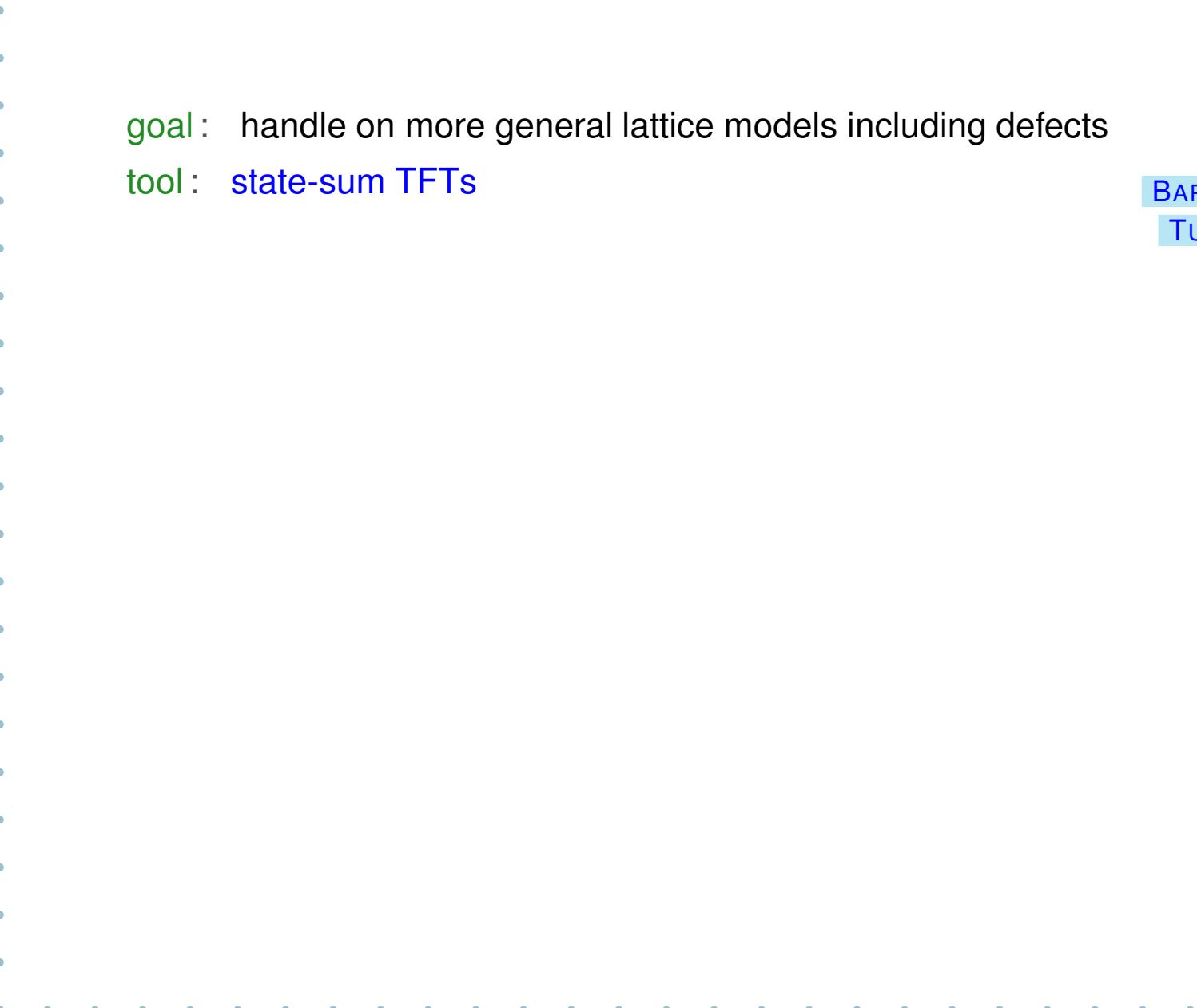
State-sum models

- goal: handle on more general lattice models including defects
- tool: state-sum TFTs

TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER



goal: handle on more general lattice models including defects

tool: state-sum TFTs

TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER

T-V TFT:

- input data: spherical fusion category \mathcal{D}
oriented three-manifold \mathcal{M} possibly with gluing boundary Σ
skeleton Δ for \mathcal{M} (generalized triangulation, $\Delta_0 \cap \Sigma = \emptyset$)

goal: handle on more general lattice models including defects

tool: state-sum TFTs

TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER

T-V TFT:

- input data: spherical fusion category \mathcal{D}
oriented three-manifold \mathcal{M} possibly with gluing boundary Σ
skeleton Δ for \mathcal{M}
- state sum variables: simple object $d \in \mathcal{D}$ for each 2-cell in $\Delta_2 \setminus \Sigma$
- vector spaces $V_{e\pm}$: for each half edge (edge $e \in \Delta_1$ + end point)

$$V_{e+} = \text{Hom}_{\mathcal{D}}(1, d_1 \otimes \cdots \otimes d_n) \cong (V_{e-})^*$$

(d_i state sum variables of adjacent 2-cells)

goal: handle on more general lattice models including defects

tool: state-sum TFTs

TURAEV-VIRO

BARRETT-WESTBURY

TURAEV-VIRELIZIER

T-V TFT:

- input data: spherical fusion category \mathcal{D}
oriented three-manifold \mathcal{M} possibly with gluing boundary Σ
skeleton Δ for \mathcal{M}
- state sum variables: simple object $d \in \mathcal{D}$ for each 2-cell in $\Delta_2 \setminus \Sigma$
- vector spaces $V_{e\pm}$: for each half edge (edge $e \in \Delta_1$ + end point)

$$V_{e+} = \mathbf{Hom}_{\mathcal{D}}(1, d_1 \otimes \cdots \otimes d_n) \cong (V_{e-})^*$$
- vector space V_{Δ} by tensoring $V_{e\pm}$'s
- apply evaluation maps obtained from graphical calculus on spheres
that surround vertices in $\Delta_0 \setminus \Sigma$ to canonical vector in $V_{\Delta} \otimes V_{\Delta}^*$
and sum over state sum variables

⇒ TFT state space $\mathbf{tft}_{\mathcal{D}}(\Sigma)$ independent of the choice of Δ

special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with

- gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_D(\Sigma) =: \mathcal{H}_\Sigma^0$
- physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}

-
-
- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_{\mathcal{D}}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}

i.e. \mathcal{M} a \mathcal{D} -module category

KITAEV-KONG

JF-SCHWEIGERT-VALENTINO

special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with

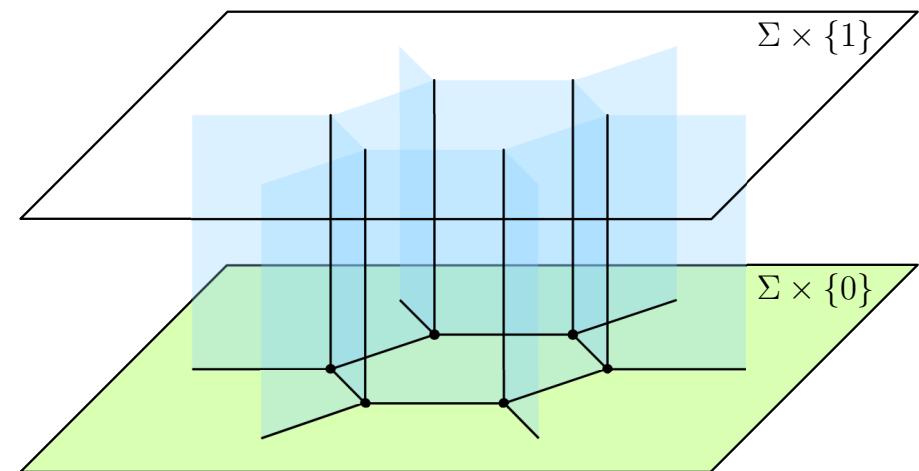
- gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_{\mathcal{D}}(\Sigma) =: \mathcal{H}_{\Sigma}^0$
- physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}

main idea:

- consider the image of $1 \in \mathbb{C} = \text{tft}_{\mathcal{D}}(\emptyset)$
under $\text{tft}_{\mathcal{D}}(M_{\Sigma}) : \mathbb{C} \rightarrow \text{tft}_{\mathcal{D}}(\Sigma)$
- interpret this vector in $\text{tft}_{\mathcal{D}}(\Sigma)$ as a state described by a PEPS tensor

- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_{\mathcal{D}}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}
- main idea:
 - consider the image of $1 \in \mathbb{C} = \text{tft}_{\mathcal{D}}(\emptyset)$ under $\text{tft}_{\mathcal{D}}(M_\Sigma) : \mathbb{C} \rightarrow \text{tft}_{\mathcal{D}}(\Sigma)$
 - interpret this vector in $\text{tft}_{\mathcal{D}}(\Sigma)$ as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

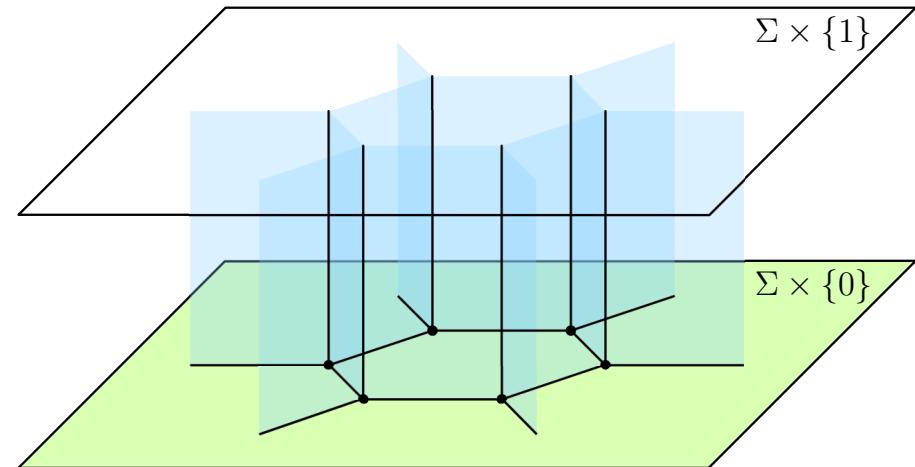
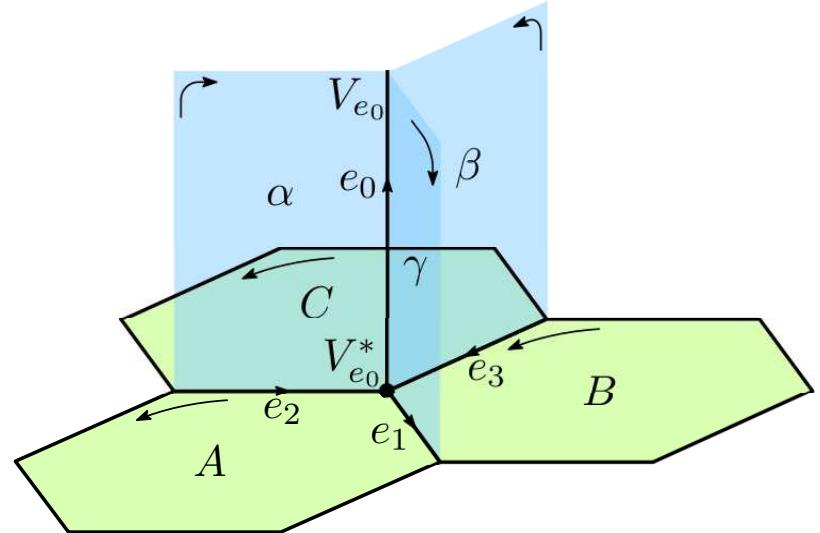


- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_\mathcal{D}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}

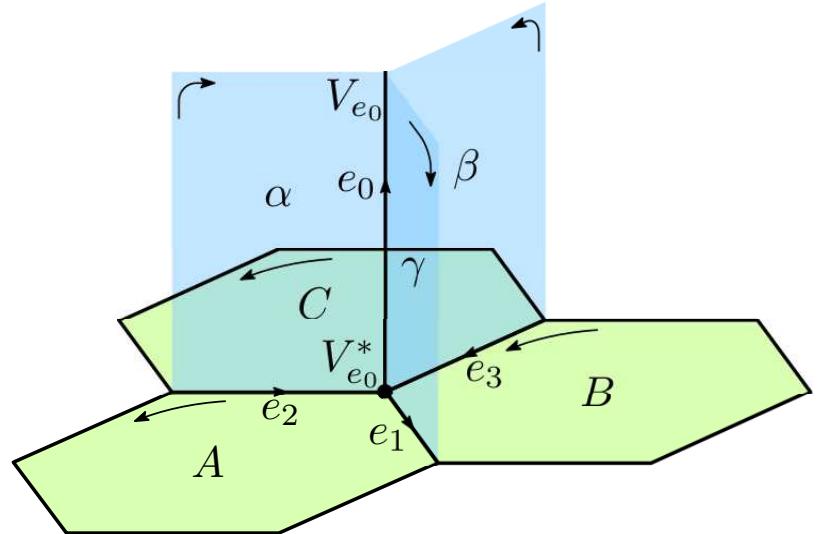
main idea:

- consider the image of $1 \in \mathbb{C} = \text{tft}_\mathcal{D}(\emptyset)$ under $\text{tft}_\mathcal{D}(M_\Sigma) : \mathbb{C} \rightarrow \text{tft}_\mathcal{D}(\Sigma)$
- interpret this vector in $\text{tft}_\mathcal{D}(\Sigma)$ as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

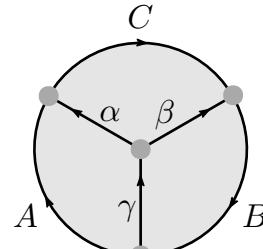
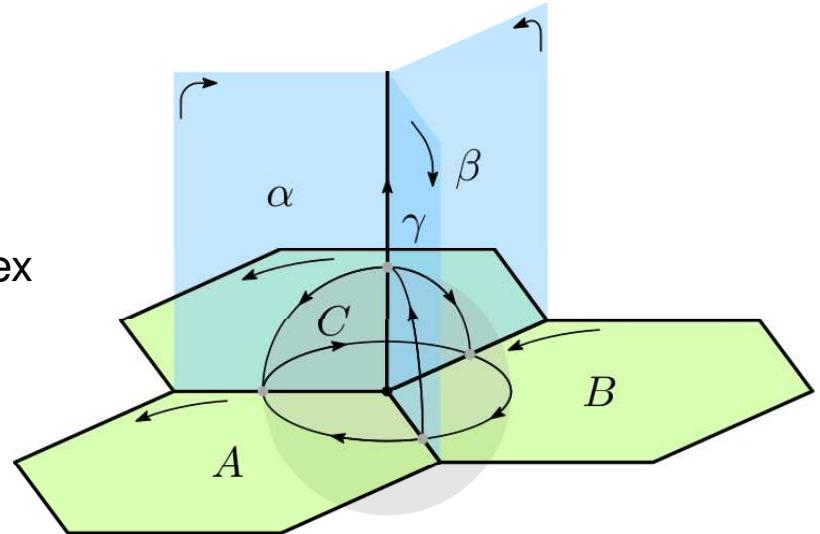


- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_{\mathcal{D}}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}
- main idea:
 - consider the image of $1 \in \mathbb{C} = \text{tft}_{\mathcal{D}}(\emptyset)$ under $\text{tft}_{\mathcal{D}}(M_\Sigma) : \mathbb{C} \rightarrow \text{tft}_{\mathcal{D}}(\Sigma)$
 - interpret this vector in $\text{tft}_{\mathcal{D}}(\Sigma)$ as a state described by a PEPS tensor
- for choice of hexagonal lattice on Σ :
 - state sum variables:
 - $\alpha \in \mathcal{D}$ for faces in the interior of M_Σ
 - $A \in \mathcal{M}$ for faces on $\Sigma \times \{0\}$
 - vector spaces of invariants:
 - Hom spaces in \mathcal{D} for edges in the interior
 - Hom spaces in \mathcal{M} for edges on $\Sigma \times \{0\}$



- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_{\mathcal{D}}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}
- main idea:
 - consider the image of $1 \in \mathbb{C} = \text{tft}_{\mathcal{D}}(\emptyset)$ under $\text{tft}_{\mathcal{D}}(M_\Sigma) : \mathbb{C} \rightarrow \text{tft}_{\mathcal{D}}(\Sigma)$
 - interpret this vector in $\text{tft}_{\mathcal{D}}(\Sigma)$ as a state described by a PEPS tensor
- for choice of hexagonal lattice on Σ :
 - state sum variables
 - vector spaces of invariants
 - graphical calculus on sphere around the vertex

⇒ 6j-symbol



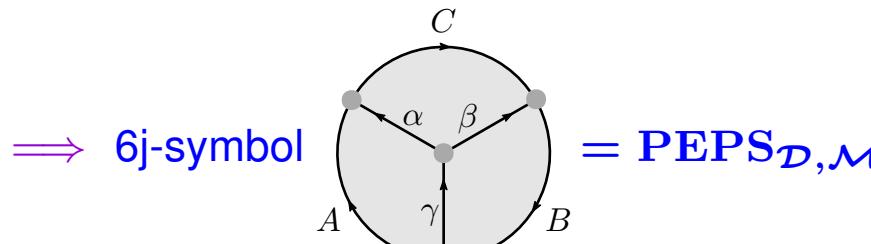
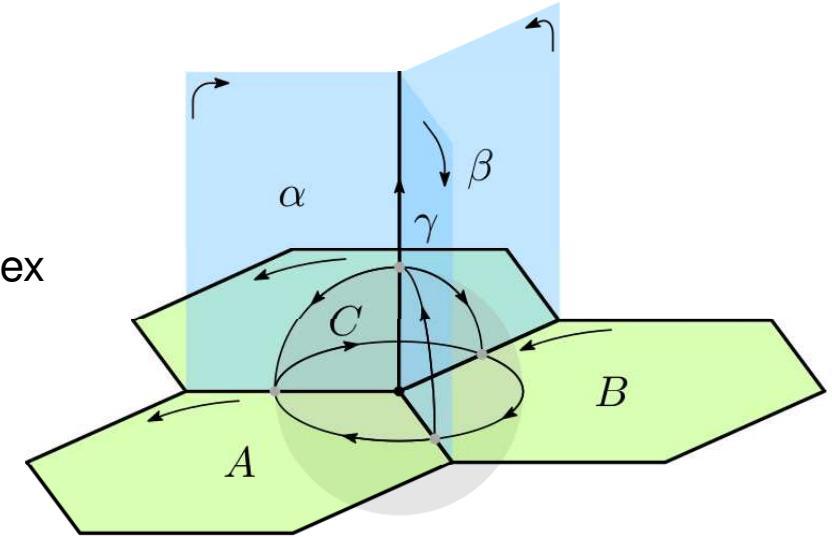
- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_{\mathcal{D}}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}

main idea:

- consider the image of $1 \in \mathbb{C} = \text{tft}_{\mathcal{D}}(\emptyset)$ under $\text{tft}_{\mathcal{D}}(M_\Sigma) : \mathbb{C} \rightarrow \text{tft}_{\mathcal{D}}(\Sigma)$
- interpret this vector in $\text{tft}_{\mathcal{D}}(\Sigma)$ as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

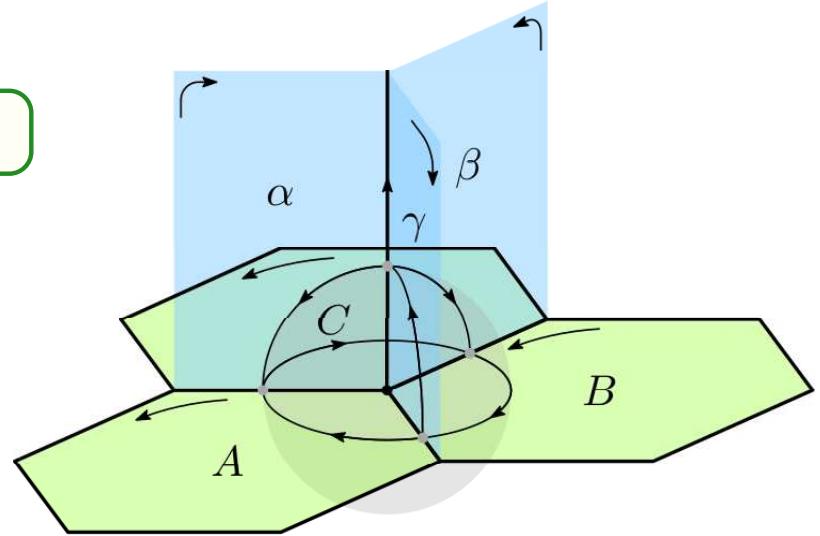
- state sum variables
- vector spaces of invariants
- graphical calculus on sphere around the vertex



- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_{\mathcal{D}}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}
- main idea:
 - consider the image of $1 \in \mathbb{C} = \text{tft}_{\mathcal{D}}(\emptyset)$ under $\text{tft}_{\mathcal{D}}(M_\Sigma) : \mathbb{C} \rightarrow \text{tft}_{\mathcal{D}}(\Sigma)$
 - interpret this vector in $\text{tft}_{\mathcal{D}}(\Sigma)$ as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

then indeed: $\text{tft}_{\mathcal{D}}(M_\Sigma)(1) = \text{PEPS}_{\mathcal{D}, \mathcal{M}}$



- special case: three-manifold $M = M_\Sigma := \Sigma \times [0, 1]$ with
 - gluing boundary $\Sigma \times \{1\}$ with state space $\text{tft}_\mathcal{D}(\Sigma) =: \mathcal{H}_\Sigma^0$
 - physical boundary $\Sigma \times \{0\}$ with specified boundary condition \mathcal{M}

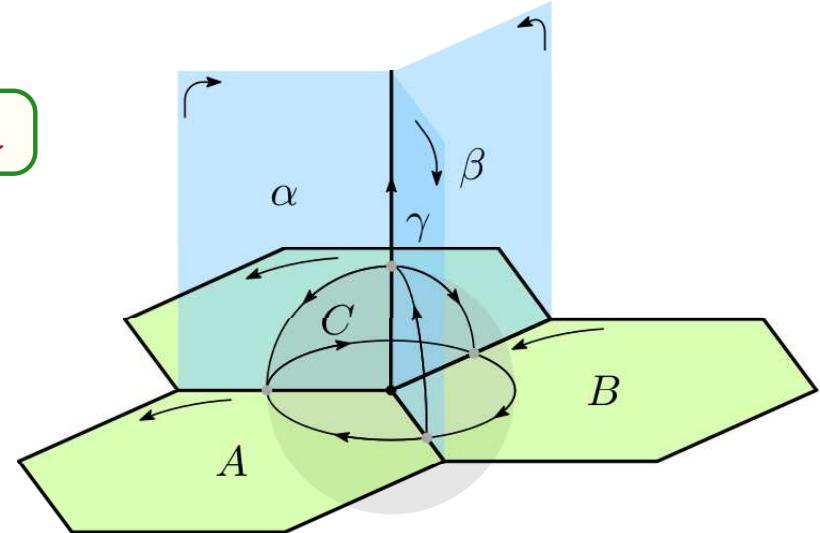
main idea:

- consider the image of $1 \in \mathbb{C} = \text{tft}_\mathcal{D}(\emptyset)$ under $\text{tft}_\mathcal{D}(M_\Sigma) : \mathbb{C} \rightarrow \text{tft}_\mathcal{D}(\Sigma)$
- interpret this vector in $\text{tft}_\mathcal{D}(\Sigma)$ as a state described by a PEPS tensor

for choice of hexagonal lattice on Σ :

then indeed: $\text{tft}_\mathcal{D}(M_\Sigma)(1) = \text{PEPS}_{\mathcal{D}, \mathcal{M}}$

state-sum TFT provides
a holographic description of PEPS
that is independent of lattices



- inclusion of **MPO** symmetries:
 - insert defect lines on the physical boundary ('boundary Wilson lines')
 - labeled by objects in $\mathcal{F}un_{\mathcal{D}}(\mathcal{M}, \mathcal{M}) = \mathcal{D}^* =: \mathcal{C}$

further issues :

- inclusion of **MPO** symmetries :
insert defect lines on the physical boundary ('boundary Wilson lines')
- can be analyzed numerically after obtaining 6j-symbols by solving pentagons
- case $\mathcal{M} \simeq \mathcal{A}\text{-mod}$ for \mathcal{A} pointed considered earlier

LOOTENS

LUO-LAKE-WU

• further issues :

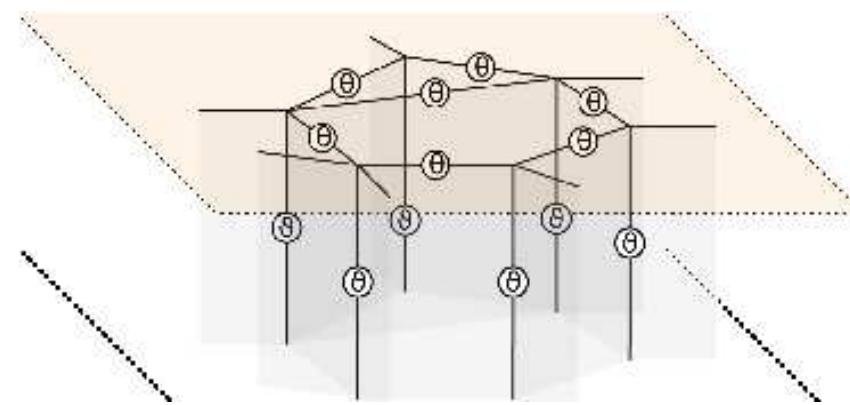
- inclusion of **MPO** symmetries :
insert defect lines on the physical boundary ('boundary Wilson lines')
- can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS

• generalizations :

- include non-trivial dynamics by sandwiching with additional physical boundary

e.g for generalized Ising models



DELCAMP-ISHTIAQUE

• further issues :

- inclusion of **MPO** symmetries :
insert defect lines on the physical boundary ('boundary Wilson lines')
- can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS

• generalizations :

- include non-trivial dynamics by sandwiching with additional physical boundary
- more general **MPO** symmetries : defect lines on the physical boundary
labeled by objects in $\mathcal{F}un_{\mathcal{D}}(\mathcal{M}_1, \mathcal{M}_2) \simeq \mathcal{M}_2 \boxtimes_{\mathcal{D}} \overline{\mathcal{M}}_1$

further issues :

- inclusion of MPO symmetries :
insert defect lines on the physical boundary ('boundary Wilson lines')
- can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS

generalizations :

- include non-trivial dynamics by sandwiching with additional physical boundary
- more general MPO symmetries : defect lines on the physical boundary
labeled by objects in $\mathcal{F}un_{\mathcal{D}}(\mathcal{M}_1, \mathcal{M}_2) \simeq \mathcal{M}_2 \boxtimes_{\mathcal{D}} \overline{\mathcal{M}}_1$
- more general PEPS tensors :
 \mathcal{D}_1 - \mathcal{D}_2 -surface defect \mathcal{B}
separating 3-cells of \mathcal{M}_{Σ} labeled by \mathcal{D}_1 and \mathcal{D}_2
- generalized anyons :
point insertions on defect lines

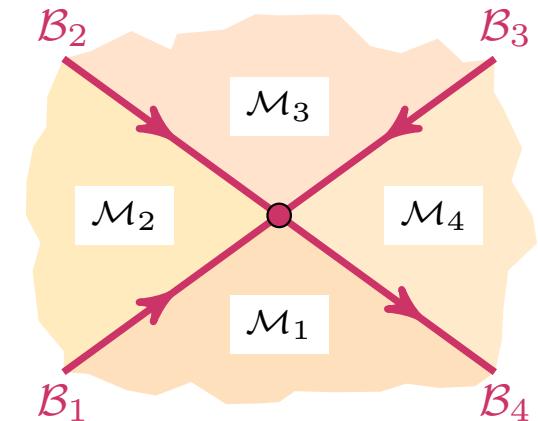
• further issues :

- inclusion of MPO symmetries :
insert defect lines on the physical boundary ('boundary Wilson lines')
- can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS

• generalizations :

- include non-trivial dynamics by sandwiching with additional physical boundary
- more general MPO symmetries : defect lines on the physical boundary
labeled by objects in $\mathcal{F}un_{\mathcal{D}}(\mathcal{M}_1, \mathcal{M}_2) \simeq \mathcal{M}_2 \boxtimes_{\mathcal{D}} \overline{\mathcal{M}_1}$
- more general PEPS tensors :
 \mathcal{D}_1 - \mathcal{D}_2 -surface defect \mathcal{B}
separating 3-cells of \mathcal{M}_{Σ} labeled by \mathcal{D}_1 and \mathcal{D}_2
- generalized anyons :
point insertions on defect lines



Outlook

messages :

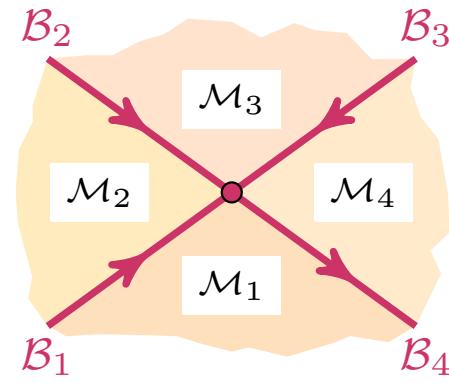
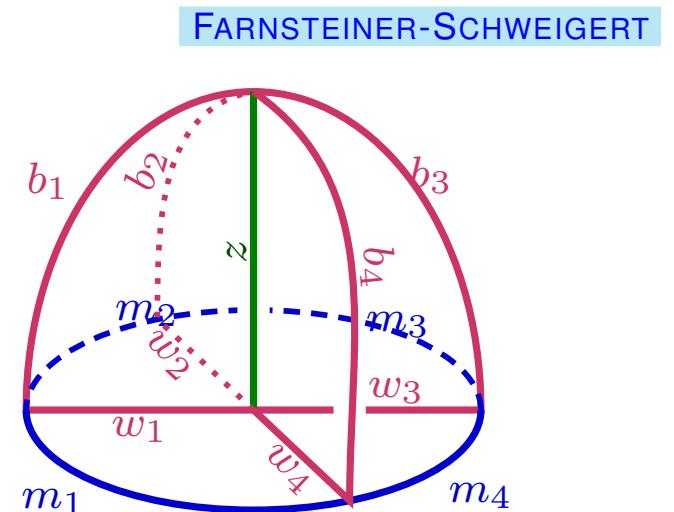
- the mathematical structure of topological symmetries for PEPS is bicategorical
- T-V state-sum models with boundaries and defects are extremely useful
- tensor network techniques can provide a computational handle on bicategorical structures

messages :

- the mathematical structure of topological symmetries for PEPS is bicategorical
- T-V state-sum models with boundaries and defects are extremely useful
- tensor network techniques can provide a computational handle on bicategorical structures

work in progress :

- analyze general PEPS/MPO/anyons
- important tool: calculus of *extruded graphs*



•

•

messages :

- the mathematical structure of topological symmetries for PEPS is bicategorical
- T-V state-sum models with boundaries and defects are extremely useful
- tensor network techniques can provide a computational handle on bicategorical structures

work in progress :

- analyze general PEPS/MPO/anyons
 - **important tool** : calculus of *extruded graphs*

further directions :

- non-semisimple models
 - (results for pivotal bicategories obtained in framework of finite tensor categories)
- non-rigid dualities
- higher dimensions (higher fusion categories)

THANK YOU