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> motivation: gapped ground states

1> physics: 1-d systems: MPS
2-d systems: PEPS
symmetries: MPO

i (bi)categorical perspective

1> state-sum models with defects

based on

2008.11187 — with L. Lootens, J. Haegeman, C. Schweigert, F. Verstraete
2207.07031 — with C. Galindo, D. Jaklitsch, C. Schweigert
ongoing — with Y. Ogata, C. Schweigert
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quantum many-body system:
e collection of sites with adjancency rules (/attice of atoms/molecules)

e at each site a state space H.:

finite-dimensional vector space with non-degenerate pairing H Q H — k
e total state space Hiot = HEY with N> 1

e dynamics/interactions specified by a Hamilton operator H : Hiot —> Hiot
e.g. nearest-neighbour Heisenberg Hamiltonian

(largely immaterial in the sequel)
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Tensor networks & bicategories

quantum many-body system:
e collection of sites with adjancency rules (/attice of atoms/molecules)

e at each site a state space H.:

finite-dimensional vector space with non-degenerate pairing H Q H — k

e total state space Hiot = HEY with N> 1

e dynamics/interactions specified by a Hamilton operator H : Hiot —> Hiot
e.g. nearest-neighbour Heisenberg Hamiltonian

] (largely immaterial in the sequel)
observation:

ww existence of gapped systems with gap between the ground state energy
(lowest H-eigenvalue) and excited-state energies persisting for N — oo

result:

== methods for parametrizing states in a small subspace of Hiot
which e.g. give excellent approximation to the ground state
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1-d system: spin chain
e collection of sites: along a line

e for convenience: line ~ circle (“periodic boundary conditions”)

and translationally invariant Hamilton operator
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1-d system: spin chain
e collection of sites: along a line

e for convenience: line ~ circle (“periodic boundary conditions”)

tool:
e auxiliary vector space V

e D x D x d-tensor: numbers | (A7)p,q with j € {1,2,...,h=dim(H)}

| and p,qe {1,2,..., D =dim(V)}
e family of states

h
[P (A)) = Z Tr(AI1AI2 ... AIN) |51) @ |j2) -+ ®|iN) € Heo

J1:325---5dJN=1

with { |7)} a basis of H
dependingon D?h < h™N = dim(#H4ot) parameters
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1-d system: spin chain

e collection of sites: along a line

e for convenience: line ~ circle (“periodic boundary conditions”)

tool:

e auxiliary vector space V

e D x D x d-tensor: numbers | (A7)p,q with j € {1,2,...,h=dim(H)}

_ and p,qe {1,2,...,D=dim(V)}
e family of states

h . . .
[P(A) = > T(ATAZ ... AIN) 1) @ lj2) -+ ®liN) € Hiot
J1:325--5IJN—=1
; with {|7)} abasis of H
A A A

graphically: | |4(A)) =

J1

J2

JN
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terminology: MPS = matrix product state

result:

e MPS give efficient approximation to ground states of local gapped Hamiltonians

e MPS can be easily studied numerically

challenge:
get a conceptual handle on the subspace spanned by the MPS vectors [¢(A))
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terminology: MPS = matrix product state

result:

e MPS give efficient approximation to ground states of local gapped Hamiltonians

e MPS can be easily studied numerically

challenge:
get a conceptual handle on the subspace spanned by the MPS vectors [¢(A))

alternative terminology : originating from alternative construction
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Interlude: MPS = PEPS

Tensor networks & bicategories

alternative construction:

e at each site place two D-dim degrees of freedom :

D D D D D D D D
® o ® o ® o ® o
J1 J2 J3 J4

e maximally entangle all pairs on neighboring sites :
ja){al Ja)lal Ja)lal |a){al |a){al
J1 J2 J3 J4 o
with o) =) |m) ® |m)
m=1
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Interlude: MPS = PEPS

Tensor networks & bicategories

alternative construction:

e at each site place two D-dim degrees of freedom :

D D D D D D D D
® o ® o ® o © o
J1 J2 J3 J4

e maximally entangle all pairs on neighboring sites :

) (o] |a)(al [a)(a] |a){al [a)(c]
A® B N® OO OO O
J1 J2 J3 J4

e act on the pair at each site with the linearmap f,: CP @ ¢ — C”

J1 J2 J3 Ja

—> realize the vector [y (A)) as projected entangled pair state

) —pn. 9/33
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result:
e MPS give efficient approximation to ground states of local gapped Hamiltonians

e MPS can be easily studied numerically

challenge:
get a conceptual handle on the subspace spanned by the MPS vectors [¢(A))

terminology: MPS = matrix product state /
PEPS = projected entangled pair state

N —n. 10/33



Spin chains Tensor networks & bicategories

result:
e MPS give efficient approximation to ground states of local gapped Hamiltonians

e MPS can be easily studied numerically

challenge:
get a conceptual handle on the subspace spanned by the MPS vectors [¢(A))

terminology: MPS = matrix product state /
PEPS = projected entangled pair state

important virtue of the description as PEPS: generalizes directly to d > 1
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PEPS Tensor networks & bicategories

2-d system:
e collection of sites: on a plane
e 2-d adjancency rules: each site with n nearest neighbors

e at each site physical state space H & m copies of auxiliary vector space V
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PEPS Tensor networks & bicategories

2-d system:
e collection of sites: on a plane
e 2-d adjancency rules: each site with n nearest neighbors

e at each site physical state space H & m copies of auxiliary vector space V

e PEPS tensor [(Aj)pl,pz...pnj with j €{1,2,...,h=dim(H)}
and p,...,pn €{1,2,..., D =dim(V)}

e.g. for square lattice
schematically :

/’H “sticking out”
T ...

e v
| L L L

]

N
L
N
L
N
L
N
L

<
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idea: more structure via topological symmetries
e explaining e.g. the topology-dependence of ground-state degeneracies

e naturally encoded in codimension-1 defects
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idea: more structure via topological symmetries
e explaining e.g. the topology-dependence of ground-state degeneracies

e naturally encoded in codimension-1 defects

e.g. for square lattice f f f f

schematically : L, 3/ : Z/ i J\ : Z/’H
/(O—C
[ T [ [Z/ [Z/
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Line defects Tensor networks & bicategories

idea: more structure via topological symmetries
e explaining e.g. the topology-dependence of ground-state degeneracies
e naturally encoded in codimension-1 defects

e.g. for square lattice

schematically : o, z/ : z/ i J\ : J/'H
/(O—C
[Z/ L] [Z/ [Z/
b

\ %8

involving a further auxiliary space W

and a further tensor

with o, 8 € {1,2,...,dim(W)}
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Line defects

idea: more structure via topological symmetries

Tensor networks & bicategories

e explaining e.g. the topology-dependence of ground-state degeneracies

e naturally encoded in codimension-1 defects

e.g. for square lattice f f f

H

schematically : B s A
(O—C
S
2

involving a further auxiliary space W

and a further tensor

— task: formalization of line defects in 2-d systems

tool: categories and bicategories

Y
2
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Line defects

Tensor networks & bicategories

desirable properties of line defects

can carry point-like insertions
( defect fields)

can be fused
are oriented & can be deformed

duality amounts to orientation reversal
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Line defects

Tensor networks & bicategories

desirable properties of line defects +— mathematical structure

can carry point-like insertions category C of defects
( defect fields)
can be fused monoidal structure on C
are oriented & can be deformed rigid dualities on C
duality amounts to orientation reversal spherical structure on C
“further QFT-motivated properties” C finitely semisimple
( model-dependent!) C-linear abelian

. \\.‘:‘ (spherical fusion category C of defects]
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Bicategorical setup
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Two monoidal categories

Tensor networks & bicategories

e MPO tensor = w V&2 o W®2 __, ¢

e thus linearmap By (v): W — W forany veV RV

terminology: MPQ = matrix product operator
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Tensor networks & bicategories

e MPO tensor = w V&2 o W®2 __, ¢
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assume: algebra Byy := (B (v)) C Endc (W) semisimple

—> decomposition W = (1 Wi,
CLEIC

with Ic = {isoclasses of simple Byy,-modules }
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Two monoidal categories

Tensor networks & bicategories

e MPO tensor = W V&2 o W®2 __, ¢

e thus linearmap By (v): W — W forany veV RV

assume: algebra Byy := (B (v)) C Endc (W) semisimple

—> decomposition W = (1 Wi,
CLGIC

with Ic = {isoclasses of simple objects of C }
e also linearmap By (w): YV —V forany weW QW
assume: algebra By, := (By(w)) C Endgc (V) semisimple

—> decomposition V = P Va
O’.GID
with Ip = {isoclasses of simple By,-modules }
— {isoclasses of simple objects of D }
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Two monoidal categories

Tensor networks & bicategories

e MPO tensor = w + semisimplicity assumption

—> substructure of YV and W
encoded in two semisimple categories C and D
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e MPO tensor = w + semisimplicity assumption

— substructure of YV and W

encoded in two semisimple categories C and D
\ %
H

e PEPS tensor = VO3 QH —s C

\% \ %
specialized for convenience to hexagonal lattice
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Two monoidal categories

Tensor networks & bicategories

e MPO tensor = w + semisimplicity assumption

—> substructure of YV and W
encoded in two semisimple categories C and D

v
H

e PEPS tensor = VO3 QH —s C

\% \ %
specialized for convenience to hexagonal lattice

e fusion of defect lines + concatenation of PEPS -+ ...
—> C and D are fusion categories
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Two monoidal categories

e MPO tensor = w + semisimplicity assumption

—> substructure of YV and W
encoded in two semisimple categories C and D

v
H

e PEPS tensor = VO3 QH —s C

\% \ %
specialized for convenience to hexagonal lattice

e compatibility conditions:

A A

||
L
||

(defect lines are topological)

TTTTT

Tensor networks & bicategories

(compatibility with fusion of defects)
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Bicategory Tensor networks & bicategories

e interpretation of compatibility conditions::
pentagon identities for suitable mixed associators
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e interpretation of compatibility conditions::
pentagon identities for suitable mixed associators

— natural setting: 2-object bicategory:

/M\
o o

with some C-D-bimodule category M

e minimal realization: M invertible bimodule

—> 2-Morita context:
D = Func(M, M) and M = Func(M,C)
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Bicategory

Tensor networks & bicategories

e interpretation of compatibility conditions::
pentagon identities for suitable mixed associators

— natural setting: 2-object bicategory:

/M\
o o

with some C-D-bimodule category M

e minimal realization: M invertible bimodule

—> 2-Morita context:
D = Func(M, M) and M = Func(M,C)

e lattice interpretation of M :
labeling the 2-cells of the two-dimensional canvas on which the MPO lives
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w= lattice model on hexagonal lattice in the bicategorical setting :

e physical space H = EB Homp (a ® 8, )
a,B,velp
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w= lattice model on hexagonal lattice in the bicategorical setting :
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Lattice model
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w= lattice model on hexagonal lattice in the bicategorical setting :

o physicalspace H = (P Homp(a®fS,7)
o,B,velp
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A,BEIM
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Lattice model

Tensor networks & bicategories

w= lattice model on hexagonal lattice in the bicategorical setting :

o physicalspace H = (P Homp(a®fS,7)
o,B,velp

o auxiaryspace V = P Hompy(A<a,B)
A,BEIM
aEID

e auxiliary space W

@ Hompaq(a> A, B)
A,BEIM
CLEIC

= C and D spherical fusion categories

—> 6] symbols <+— tetrahedra

e YF: 6j-symbols for C as monoidal category

e “F: 6j-symbols for D as monoidal category

e F = fusion of MPO tensors: mixed 6j-symbols for M as left C-module
e °F = PEPS : mixed 6j-symbols for M as right D-module

e “F = MPO : mixed 6j-symbols for M as bimodule
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Lattice model Tensor networks & bicategories

w= lattice model on hexagonal lattice in the bicategorical setting :

e physical space

e auxiliary space

e auxiliary space

H =

v

w

@ Hom’D(a X 3, '7)

a,B,velp
@ Homaq (A<, B)

A,BEIM
aEID
ED Homaq(al> A, B)

A,BEIM
CLEIC

= C and D spherical fusion categories

—> pentagon identities including e.g.

e ((a®b)>A)d

\
4

\
/4

Lad> (b>(A<da))

o (apA)Y<da)«p

\
4

\
4

\
4

i ab (A< (a®kB))

\
4

TTTTT
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Lattice model Tensor networks & bicategories

w= lattice model on hexagonal lattice in the bicategorical setting :

e physical space H = ED Homp (a ® 8, )
a,B,velp
@ Homa (A< o, B)

A,BEIM
aEID

ED Homaq(a> A, B)
A,BEIM
CLEIC

= C and D spherical fusion categories

e auxiliary space V

e auxiliary space W

—> pentagon identities including e.g.

¢ ((a®@b)>A)da_ 7T _Lab(b>(Ada))

> (FE ) i (R ot = S (&) s CFET) gt CRE ) 27
o F,rst

e (abA)da)dB 75 Lab(Ad(a®B))

’ ’ F7 E, A ’
S RGO B CF™ ) 808 = 3 CRB=) B3 (R ™) D (P 3y
o F,rst

S i —n. 21/33



Tensor networks & bicategories

Lattice model — main insights

N —n. 22/33



Lattice model — main insights

Tensor networks & bicategories

= PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context
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Lattice model — main insights

Tensor networks & bicategories

= PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context

’ > \
Y
(o o
\ ,\ﬁ/ J

w= contracting a network of PEPS and MPO tensors
gives candidate ground state as element of a subspace of H®N

= any indecomposable pivotal C-module M gives a PEPS
= the PEPS for M exhibits MPO symmetries given by C* = Fun¢e (M, M)

w= different choices for M amount to different ‘coordinates’ for the system
and exhibit different topological symmetries
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Lattice model — main insights

Tensor networks & bicategories

= PEPS in 2 dimensions and their MPO symmetries fit into a strong 2-Morita context

’ - \
Y
(o o
\ ,\ﬁ/ J

w= contracting a network of PEPS and MPO tensors
gives candidate ground state as element of a subspace of H®N

= any indecomposable pivotal C-module M gives a PEPS
= the PEPS for M exhibits MPO symmetries given by C* = Fun¢e (M, M)

w= different choices for M amount to different ‘coordinates’ for the system
and exhibit different topological symmetries

s plvotal categorical Morita equivalence relates dual descriptions :
D = Func(M, M) C =Funp (M, M) Z(C) =Z(D)
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2-Morita contexts

2-Morita context:

s

2-Morita context :
e finite muliitensor categories C and D
e bimodules ¢ Mp and pANc
e bimodule functors MHRpN —C and N X M — D
e two bimodule natural transformations filling a diagram for those functors

e pentagon identities for these natural transformations

Tensor networks & bicategories
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2-Morita context:

4 )

strong 2-Morita context:
e finite muliitensor categories C and D
e bimodules ¢cMp and pNe = M
e bimodule equivalences M Xp N —C and N Xe¢ M — D
e two bimodule natural transformations filling a diagram for those functors

e pentagon identities for these natural transformations
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strong 2-Morita context:
e finite muliitensor categories C and D
e bimodules ¢cMp and pNe = M
e bimodule equivalences M Xp N —C and N Xe¢ M — D
e two bimodule natural transformations filling a diagram for those functors

e pentagon identities for these natural transformations

Proposition :
every 2-Morita context gives a 2-object bicategory
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2-Morita contexts

Tensor networks & bicategories

2-Morita context:

4 )

strong 2-Morita context:
e finite muliitensor categories C and D
e bimodules ¢cMp and pNe = M
e bimodule equivalences M Xp N —C and N Xe¢ M — D
e two bimodule natural transformations filling a diagram for those functors

e pentagon identities for these natural transformations

Proposition :
every 2-Morita context gives a 2-object bicategory

e composition of 1-morphisms via Q¢ , QD ,<c, ey, <D, >, e, Hp
e 16 associativity constraints

e 32 pentagon diagrams “commuting by construction”
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2-Morita contexts

Tensor networks & bicategories

Proposition::

e any exact module category M over a finite tensor category C
gives a strong Morita context

e this admits rigid dualities :

m’ =Hom ,,(m,—) internal Hom

Ym = coHom , ,(m, —) internal coHom

and similarly for M

. J

for meM
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2-Morita contexts

Tensor networks & bicategories

4 N\

Proposition::

e any exact module category M over a finite tensor category C
gives a strong Morita context

e this admits rigid dualities :

m’ =Hom ,,(m,—) internal Hom

Ym = coHom , ,(m, —) internal coHom

and similarly for M

\. J

for meM

= double duals given by relative Serre functors: m"”Y = S% ,(m)
V¥im =Sl (m)
w= pivotal structure on an exact module category M over a pivotal tensor category :

o
natural isomorphism id x4y — S’ SCHAUMANN, SHIMIZU
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2-Morita contexts

Tensor networks & bicategories

p
Proposition::
e any exact module category M over a finite tensor category C
gives a strong Morita context

e this admits rigid dualities :

m’ =Hom ,,(m,—) internal Hom

for me M
Ym = coHom , ,(m, —) internal coHom

and similarly for M

\. J

= double duals given by relative Serre functors: m"”Y = S% ,(m)

w» pivotal structure on arigid bicategory B :
pseudonatural equivalence [77: idg — (_)\/v]

w= Spherical 2-Morita context for a spherical module category M
over a unimodular (Radford-) spherical finite tensor category :
72 coinciding with another pseudonatural equivalence id — (—)VVVV
involving the relative Serre pseudofunctor S on the associated bicategory Ba,

S i —D. 26/33
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Proposition::
e any exact module category M over a finite tensor category C
gives a strong Morita context
e this admits rigid dualities :

m’ =Hom ,,(m,—) internal Hom

Ym = coHom , ,(m, —) internal coHom

and similarly for M

for meM

4 N\

Theorem: for M a pivotal module category :
e the 2-Morita context for M is a pivotal bicategory
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4 N\

Proposition::
e any exact module category M over a finite tensor category C
gives a strong Morita context
e this admits rigid dualities :

m’ =Hom ,,(m,—) internal Hom

Ym = coHom , ,(m, —) internal coHom

and similarly for M

for meM

4 N\

Theorem: for M a pivotal module category :
e the 2-Morita context for M is a pivotal bicategory

e the internal End Hom(m,m) ofany m € M
has a natural structure of symmetric Frobenius algebra

N —n. 26/33
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Proposition::
e any exact module category M over a finite tensor category C
gives a strong Morita context
e this admits rigid dualities :

m’ =Hom ,,(m,—) internal Hom

Ym = coHom , ,(m, —) internal coHom

and similarly for M

for meM

4 N\

Theorem: for M a pivotal module category :
e the 2-Morita context for M is a pivotal bicategory

e the internal End Hom(m,m) ofany m € M
has a natural structure of symmetric Frobenius algebra

e sphericality of the 2-Morita context captures
preservation of sphericality under pivotal 2-Morita equivalence

N —n. 26/33



Tensor networks & bicategories

State-sum models

N —n. 27/33



State-sum TFTs

Tensor networks & bicategories

goal: handle on more general lattice models including defects
TURAEV-VIRO

tool: state-sum TFTs BARRETT-WESTBURY
TURAEV-VIRELIZIER

N —n. 28/33



State-sum TFTs

Tensor networks & bicategories

goal: handle on more general lattice models including defects
TURAEV-VIRO
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T-V TFT

e input data: spherical fusion category D
oriented three-manifold M possibly with gluing boundary X~
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goal: handle on more general lattice models including defects
TURAEV-VIRO

tool: state-sum TFTs BARRETT-WESTBURY
TURAEV-VIRELIZIER

T-V TFT

e input data: spherical fusion category D
oriented three-manifold M possibly with gluing boundary X~
skeleton A for M

e state sum variables: simple object d € D for each 2-cell in A2\ ¥

e vector spaces Ve, : for each half edge (edge e € A1 + end point)
Ve+ — Homp(l, di1®--- & dn) — (Ve_)*

(d; state sum variables of adjacent 2-cells)
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State-sum TFTs

Tensor networks & bicategories

goal: handle on more general lattice models including defects
TURAEV-VIRO

tool: state-sum TFTs BARRETT-WESTBURY

TURAEV-VIRELIZIER
& T-V TFT:

e input data: spherical fusion category D
oriented three-manifold M possibly with gluing boundary X~
skeleton A for M

e state sum variables: simple object d € D for each 2-cell in A2\ ¥

e vector spaces Ve, : for each half edge (edge e € A1 + end point)
Ve+ — Homp(l, di1®--- & dn) — (Ve_)*

e vector space Vi by tensoring Ve s

e apply evaluation maps obtained from graphical calculus on spheres
that surround vertices in Ag\ X to canonical vector in V,QV4
and sum over state sum variables

— TFT state space tftp (%) independent of the choice of A
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special case: three-manifold M = My, := X X [0, 1] with
e gluingboundary X x {1} with state space tftp(X) =: H2
e physical boundary 3 x {0} with specified boundary condition M
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special case: three-manifold M = My, := X X [0, 1] with
e gluingboundary X x {1} with state space tftp(X) =: H2
e physical boundary 3 x {0} with specified boundary condition M

i.e. M a D-module category KITAEV-KONG
J-SCHWEIGERT-VALENTINO
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e gluingboundary X x {1} with state space tftp(X) =: H2
e physical boundary 3 x {0} with specified boundary condition M

main idea:

e consider the image of 1 € C = tftp (0)
under tftp(Msy): C — tftp(X)

e interpret this vector in tftp(3) as a state described by a PEPS tensor

for choice of hexagonal lattice on 3': “
e state sum variables: ~ Ve \,
o € D for faces in the interior of M. a €o p

A € M forfaceson X' x {0} 17 \
C
e vector spaces of invariants : ( v . L —
€0 3
Hom spaces in D for edges in the interior Z—— €3 ) B

(&
Hom spaces in M for edges on X x {0} ( A /
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special case: three-manifold M = My, := X X [0, 1] with
e gluingboundary X x {1} with state space tftp(X) =: H2
e physical boundary 3 x {0} with specified boundary condition M

main idea:

e consider the image of 1 € C = tftp (D)
under tftp(Msy): C — tftp(X)
e interpret this vector in tftp(X) as a state described by a PEPS tensor

for choice of hexagonal lattice on 3': “

then indeed: [tft’D(MZ‘)(l) = PEPSD’MJ 3 \v B

" N
& state-sum TFT provides Caswy \
a holographic description of PEPS C 5/’* )
B
N\

that is independent of lattices (/,__ |
h g A /
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Generalizations Tensor networks & bicategories

further issues:

e inclusion of MPO symmetries :
insert defect lines on the physical boundary (‘boundary Wilson lines’)

labeled by objects in Funp (M, M) =D* =:C
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further issues:

e inclusion of MPO symmetries :
insert defect lines on the physical boundary (‘boundary Wilson lines’)

e can be analyzed numerically after obtaining 6j-symbols by solving pentagons
LOOTENS ......
e case M ~ A-mod for A pointed considered earlier LUuo-LAKE-WU
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further issues:

e inclusion of MPO symmetries :
insert defect lines on the physical boundary (‘boundary Wilson lines’)

e can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS ......
generalizations:

e include non-trivial dynamics by sandwiching with additional physical boundary

e.g for generalized T
Ising models : =

DELCAMP-ISHTIAQUE

N —n. 30/33



Generalizations

Tensor networks & bicategories

further issues:

e inclusion of MPO symmetries :
insert defect lines on the physical boundary (‘boundary Wilson lines’)

e can be analyzed numerically after obtaining 6j-symbols by solving pentagons

LOOTENS ......
generalizations:

e include non-trivial dynamics by sandwiching with additional physical boundary

e more general MPO symmetries: defect lines on the physical boundary
labeled by objects in Funp (M1, Mz2) ~ Mo Xp My

N —n. 30/33



Generalizations

Tensor networks & bicategories

further issues:

e inclusion of MPO symmetries :
insert defect lines on the physical boundary (‘boundary Wilson lines’)

e can be analyzed numerically after obtaining 6j-symbols by solving pentagons
LOOTENS ......

generalizations:
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further issues:

e inclusion of MPO symmetries :
insert defect lines on the physical boundary (‘boundary Wilson lines’)

e can be analyzed numerically after obtaining 6j-symbols by solving pentagons
LOOTENS ......

generalizations:

e include non-trivial dynamics by sandwiching with additional physical boundary

e more general MPO symmetries: defect lines on the physical boundary
labeled by objects in Funp (M1, Mz2) ~ Mo Xp My

e more general PEPS tensors : B B3
D -D>-surface defect B Ma
separating 3-cells of M5 labeled by Dy and D»

Mo My

e generalized anyons::

My

point insertions on defect lines
Bl B4
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Outlook Tensor networks & bicategories

messages:
e the mathematical structure of topological symmetries for PEPS is bicategorical
e T-V state-sum models with boundaries and defects are extremely useful

e tensor network techniques can provide a computational handle
on bicategorical structures
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Tensor networks & bicategories

messages:
e the mathematical structure of topological symmetries for PEPS is bicategorical
e T-V state-sum models with boundaries and defects are extremely useful

e tensor network techniques can provide a computational handle
on bicategorical structures

work in progress:
e analyze general PEPS/MPQO/anyons

important tool : calculus of extruded graphs FARNSTEINER-SCHWEIGERT
B2 B3
M3
Mo My AN
My
B1 B4
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Outlook Tensor networks & bicategories

messages:
e the mathematical structure of topological symmetries for PEPS is bicategorical
e T-V state-sum models with boundaries and defects are extremely useful

e tensor network techniques can provide a computational handle
on bicategorical structures

work in progress:
e analyze general PEPS/MPQO/anyons

important tool : calculus of extruded graphs

further directions:

e non-semisimple models
(results for pivotal bicategories obtained in framework of finite tensor categories)

e non-rigid dualities

e higher dimensions ( higher fusion categories)
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