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Introduction and Motivation

Key Developments on Two-Parameter Quantum Groups
• Systematic construction and weight module theory for finite and affine

types e.g., [BW04,BGH07,HRZ08]

• Explicit basic R-matrices and their applications to FRT-reconstruction and
RLL-realization e.g., [JL14,HXZ24,ZHJ24,ZHX24]

[BW04] Benkart, G., Witherspoon, S. (2004) Two-parameter quantum groups and Drinfel’d
doubles. Algebras Represent. Theory 7(3), 261–286.
[BGH07] Bergeron, N., Gao, Y., Hu, N. (2007) Representations of two-parameter quantum
orthogonal groups and symplectic groups. In: AMS/IP Stud. Adv. Math., 39, Amer. Math.
Soc., Providence, RI, 1–21.
[HRZ08] Hu, N., Rosso, M., Zhang, H. (2008) Two-parameter quantum affine algebra
Ur,s (𝔰𝔩∼n ), Drinfel’d realization and quantum affine Lyndon basis. Commun. Math. Phys.
278(2), 453–486.
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[JL14] Jing, N., Liu, M. (2014) R-matrix realization of two-parameter quantum group
Ur,s (𝔤𝔩n). Commun. Math. Stat. 2, 211–230.
[HXZ24] Hu, N., Xu, X., Zhuang, R. (2024) RLL-realization of two-parameter quantum affine
algebra of type B(1)n and regulated quantum Lyndon bases. arXiv:2405.06587.
[ZHJ24] Zhong, X., Hu, N., Jing, N. (2026) RLL-realization of two-parameter quantum affine
algebra of type C(1)n . J. Algebra Appl. (to appear).
[ZHX24] Zhuang, R., Hu, N., Xu, X. (2024) RLL-realization of two-parameter quantum affine
algebra of type D(1)n . Pacific J. Math. 329(2), 357–395.

Motivation
⊲ Open Problem: the existence and explicit construction of the universal

R-matrix for all two-parameter quantum groups
⊲ Universal R-matrix is a prerequisite for formulating isomorphism theorems:

FRT finite←→ Chevalley, RLL affine←→ Drinfeld

⊲ Topological framework is necessary for dual basis in Cartan part

[KT00] Kassel, C., Turaev, V. (2000) Biquantization of Lie bialgebras. Pacific J. Math. 195(2),
297–369.
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Main Results

Main Contributions
1. Introduced a topological two-parameter quantum group

Uh,h′ (𝔤), r = eh, s = eh′ , 𝜔i = ehHi , 𝜔′i = eh′H′i

inspired by Drinfeld’s quantum double construction
2. Explicit universal R-matrix for Uh,h′ (𝔤)

R =

( �∏
𝛼∈Φ+

exp〈𝜔′𝛼 ,𝜔𝛼 〉
E𝛼 ⊗ F𝛼
〈F𝛼, E𝛼〉

)
exp

©­«hh′
n∑

i,j=1

[
( ¤lnA)−1]

ij Hi ⊗ H′j
ª®¬

3. Uniformly recovered all known basic R-matrices of classical types
(recently construct one for type G2)

4. Central elements c𝜆 = Tr2
(
(R+)opK ′𝜆R+K𝜆(1 ⊗ Θ)

)
and c𝜆 = z𝜆, the

unique one 〈z𝜆 | −〉 = trL(𝜆) (− ◦ Θ), refining the Harish-Chandra theory
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Preliminaries: Basic Notations

Φ,Π Root system and simple root set of simple Lie algebra 𝔤
C = (cij) Cartan matrix of 𝔤
Q,P Root lattice and weight lattice
〈·, ·〉 Euler form of 𝔤
m det(C) = min{k ∈ Z+ | kP ⊆ Q}
r, s Two indeterminates
K ⊃ Q(r, s) A field of characteristic zero containing r 1

m , s 1
m

aij = r〈i,j〉s−〈j,i〉 Structure constant of Ur,s (𝔤)
A = (aij) Structure constant matrix
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Here, the Euler form of 𝔤 is the bilinear form 〈−,−〉 defined on Q satisfying

〈i, j〉 := 〈𝛼i, 𝛼j〉 =


dicij i < j,
di i = j,
0 i > j.

For type D, we revise 〈n − 1, n〉 = −1, 〈n, n − 1〉 = 1 as in [BGH06, HP12]. It
naturally extends to the weight lattice P such that

〈𝜛i, 𝜛j〉 :=
n∑

k,l=1
ckiclj〈k, l〉

[BGH06] Bergeron, N., Gao, Y., Hu, N. (2006) Drinfel’d doubles and Lusztig’s symmetries of
two-parameter quantum groups. J. Algebra 301(1), 378–405.
[HP12] Hu, N., Pei, Y. (2012) Notes on two-parameter groups (II). Comm. Algebra 40(9),
3202–3220.
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Definition of Ur,s(𝔤)

Hopf Algebra Ur,s(𝔤) (Generators: ei, fi, 𝜔±1
i , 𝜔′±1

i )
◦ (A1) {𝜔i, 𝜔′i } are invertible and pairwise commute
◦ (A2) 𝜔iej𝜔−1

i = ajiej, 𝜔′i ej𝜔′−1
i = a−1

ij ej,
𝜔ifj𝜔−1

i = aji−1fj, 𝜔′i fj𝜔′−1
i = aijfj

◦ (A3) [ei, fj] = 𝛿ij
𝜔i−𝜔′i
ri−si

◦ (A4) (adl ei)1−cij (ej) = 0, (adr fi)1−cij (fj) = 0, (i ≠ j)
◦ (C1) {𝜔i, 𝜔′i } are group-like
◦ (C2) ei is (1, 𝜔i)-skew primitive, fi is (𝜔′i , 1)-skew primitive

Skew-dual pairing 〈−,− 〉 : Ur,s(𝔟−) × Ur,s(𝔟+) → K

〈fi, ej〉 = 𝛿ij
1

si − ri
, 〈𝜔′i , 𝜔j〉 = aij,

〈𝜔′i
𝜏i , 𝜔

𝜏j
j 〉 = 〈𝜔

′
i , 𝜔j〉𝜏i𝜏j ( 𝜏i = ±1 )

9 / 47



Definition of Uh,h′ (𝔤)

Topological Hopf Algebra Uh,h′ (𝔤) (Generators: ei, fi,Hi,H′i)
◦ Over a field K̂ ⊃ Q[[h, h′]]
◦ r = eh, s = eh′ ; 𝜔i = ehHi , 𝜔′i = eh′H′i

◦ (A1) {Hi,H′i } are pairwise commute
◦ (A2) [Hi, ej] = h−1 ln(aji)ej, [H′i , ej] = −h′−1 ln(aij)ej

[Hi, fj] = −h−1 ln(aji)fj, [H′i , fj] = h′−1 ln(aij)fj

◦ (A3) [ei, fj] = 𝛿ij
ediHi−ediH′i
edih−edih′

= 𝛿ij e
hHi+h′H′i−(h+h′ )di

2
sinh

hHi−h′H′i
2

sinh (h−h′ )di
2

◦ (A4) (adl ei)1−cij (ej) = 0, (adr fi)1−cij (fj) = 0, (i ≠ j)
◦ (C1) {Hi,H′i } are primitive
◦ (C2) ei is (1, ehHi)-skew primitive, fi is (eh′H′i , 1)-skew primitive
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Ur,s(𝔤) → Uq(𝔤) : r→ q, s→ q−1, 𝜔′i = 𝜔−1
i

Uh,h′ (𝔤) → Uℏ(𝔤) : h→ ℏ, h′ → −ℏ, Hi = H′i

Extended skew-dual pairing 〈−,− 〉 : Uh,h′ (𝔟−) × Uh,h′ (𝔟+) → K̂

〈fi, ej〉 = 𝛿ij
1

si − ri
= 𝛿ij

1
edih′ − edih

1 ⩽ i, j ⩽ n,

〈H′i ,Hj〉 = (hh′)−1 ln(〈𝜔′i , 𝜔j〉)
= (hh′)−1(h〈i, j〉 − h′〈j, i〉), 1 ⩽ i, j ⩽ n,
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Weight Modules and Convex PBW-Type Lyndon Basis

Weight Modules
• Verma module M(𝜆) and irreducible

quotient L(𝜆)
• Weight space decomposition:

L(𝜆) =
⊕

𝜂≤𝜆 L(𝜆)𝜂
• Type 𝜎 weight space: M𝜂,𝜎

(trivial 𝜎 = type 1)

Convex PBW-Type Basis
• Standard Lyndon words↔

positive roots
• Quantum root vectors
E𝛾 := [E𝛼, E𝛽] 〈𝜔′𝛽 ,𝜔𝛽 〉 inductively
from costandard decomposition
(𝛼, 𝛽) of 𝛾

• Basis of U+:
{∏�𝛼∈Φ+ En𝛼

𝛼 | n𝛼 ∈ N}
• Basis of U−:
{∏≺𝛼∈Φ+ F n𝛼

𝛼 | n𝛼 ∈ N}
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Weight Modules

When 𝜆 ∈ P, denote M(𝜆) := M(𝜚𝜆) = Ur,s ⊗B 𝜚𝜆, and L(𝜆) the unique
irreducible quotient of M(𝜆).

( For Ur,s(𝔤) ) 𝜚𝜆(𝜔i) :=
n∏

j=1
〈𝜔′j , 𝜔i〉𝜆j , 𝜚𝜆(𝜔′i ) :=

n∏
j=1
〈𝜔′i , 𝜔j〉−𝜆j ;

( For Uh,h′ (𝔤) ) 𝜚𝜆(Hi) := h−1
n∑

j=1
𝜆j ln aji, 𝜚𝜆(H′i ) := −h′−1

n∑
j=1

𝜆j ln aij.

Constructions for Ur,s(𝔤) [BW04,BGH07,PHR10] which could be naturally extended to
the version of Uh,h′ (𝔤).

[PHR10] Pei, Y., Hu, N., Rosso, M. (2010) Multi-parameter quantum groups and quantum
shuffles (I). Contemp. Math., 506, Amer. Math. Soc., Providence, RI, 145–171.
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Lemma [BW04,BGH07,PHR10]
Let v𝜆 be a highest weight vector of M(𝜆) for 𝜆 ∈ P+. Then

L(𝜆) = M(𝜆)
/
(

n∑
i=1

Uf(𝜆,𝛼
∨
i )+1

i · v𝜆).

Also, it has the decomposition of weight space L(𝜆) =
⊕

𝜂⩽𝜆 L(𝜆)𝜂 , where

L(𝜆)𝜂 = {x ∈ L(𝜆) | 𝜔i.x = 𝜚𝜂 (𝜔i)x = 〈𝜔′𝜂 , 𝜔i〉x,
𝜔′i .x = 𝜚𝜂 (𝜔′i )x = 〈𝜔′i , 𝜔𝜂〉−1x, 1 ⩽ i ⩽ n}.
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𝜎-type weight space
For each Ur,s(𝔤)-mod M, each weight 𝜂 ∈ P and each group homomorphisms
𝜎 : (ZΦ, +) → (K×, ·), define 𝜎-type weight space

M𝜂,𝜎 := {m ∈ M | 𝜔i.x = 𝜎(𝛼i)𝜚𝜂 (𝜔i)x, 𝜔′i .x = 𝜎(𝛼i)𝜚𝜂 (𝜔′i )x, 1 ⩽ i ⩽ n}.

Notice that M =
⊕

𝜎 M𝜎 :=
⊕

𝜎

⊕
𝜂∈P M𝜂,𝜎 . If M = M𝜎 , we say that M is

of type 𝜎. In particular, if 𝜎 is trivial, we say it is of type 1.
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The convex PBW-type basis

We recall the combinatorial construction of the convex PBW-type basis for the
two-parameter quantum group Ur,s(𝔤) (e.g., [BH08, CHW23, HXZ24])

[BH08] Bai, X., Hu, N. (2008) Two-parameter quantum groups of exceptional type E-series
and convex PBW-type basis. Algebra Colloq. 15(4), 619–636.
[CHW23] Chen, X., Hu, N., Wang, X. (2023) Convex PBW-type Lyndon bases and restricted
two-parameter quantum group of type F4. Acta Math. Sin.-Engl. Ser. 39, 1053–1084.
[HXZ24] Hu, N., Xu, X., Zhuang, R. (2024) RLL-realization of two-parameter quantum affine
algebra of type B(1)n and regulated quantum Lyndon bases. arXiv:2405.06587.
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A the ordered alphabet set {1, 2, · · · , n} with 1 < 2 < · · · < n.
A∗ the set of all words in A with the induced lexicographical order <

Lyndon word l a word l ∈ A∗, s.t. l < all its proper right factors
Lyndon decomposition a factorization l = uv into two proper Lyndon words (u, v)
(Co)standard pair of l the Lyndon decomposition l = uv, where u (resp. v) is the shortest

Lyndon word that is a proper left factor of l
ℓ Lalonde-Ram correspondence: Φ+ ↔ standard Lyndon words in A∗

𝛼i ↔ ℓ(𝛼i) = i
≺ the convex ordering ≺ on Φ+ induced by ℓ

(Co)standard pair of 𝛾 the pair (𝛼, 𝛽) in Φ+, s.t. 𝛾 = 𝛼 + 𝛽, ℓ(𝛾) = ℓ(𝛼)ℓ(𝛽) is (co)standard

[LR95] Lalonde, M., Ram, A. (1995) Standard Lyndon bases of Lie algebras and enveloping
algebras. Trans. Amer. Math. Soc. 347(5), 1821–1830.
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Convex Ordering

Type Bn 𝛼1,2 ≺ 𝛼1,3 ≺ · · · ≺ 𝛼1,n ≺ 𝛼1,n+1 ≺ 𝛼1,n′ ≺ · · · ≺ 𝛼1,3′ ≺ 𝛼1,2′

≺ 𝛼2,3 ≺ · · · ≺ 𝛼2,n ≺ 𝛼2,n+1 ≺ 𝛼2,n′ ≺ · · · ≺ 𝛼2,3′

. . .
...

...
... . .

.

≺ 𝛼n−1,n ≺ 𝛼n−1,n+1 ≺ 𝛼n−1,n′

≺ 𝛼n,n+1.

Type G2 Type F4 Type E6
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Write E𝛼i = ei, F𝛼i = fi (1 ⩽ i ⩽ n). For each non-simple positive root
𝛾 ∈ Φ+ with its costandard pair (𝛼, 𝛽) (i.e., the unique pair (𝛼, 𝛽) of positive
roots satisfying 𝛾 = 𝛼 + 𝛽 and 𝛼 ≺ 𝛾 ≺ 𝛽, where 𝛼 is maximal), the quantum
root vectors E𝛾 and F𝛾 can be defined through (r, s)-bracket [−,−] ( ·)
inductively:

E𝛾 := [E𝛼, E𝛽] 〈𝜔′𝛽 ,𝜔𝛼 〉 = E𝛼E𝛽 − 〈𝜔′𝛽 , 𝜔𝛼〉E𝛽E𝛼,

F𝛾 := [F𝛽 , F𝛼] 〈𝜔′𝛼 ,𝜔𝛽 〉−1 = F𝛽F𝛼 − 〈𝜔′𝛼, 𝜔𝛽〉−1F𝛼F𝛽 .
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Theorem (B06,BH08,C08,CHW23,HW09,HW10)
{∏�𝛼∈Φ+ En𝛼

𝛼 | n𝛼 ∈ N} and {∏≺𝛼∈Φ+ F n𝛼
𝛼 | n𝛼 ∈ N} are convex PBW-type

Lyndon bases of the algebra U+ and U−, respectively.

[B06] Bai, X. (2006) Two-parameter quantum groups of type E-series & restricted
two-parameter quantum groups of type D. Ph.D. Dissertation, East China Normal University.
[C08] Chen, R. (2008) Restricted two-parameter quantum groups of type C. Ph.D. Dissertation,
East China Normal University.
[HW09] Hu, N., Wang, X. (2009) Convex PBW-type Lyndon basis and restricted
two-parameter quantum groups of type G2. Pacific J. Math. 241(2), 243–273.
[HW10] Hu, N., Wang, X. (2010) Convex PBW-type Lyndon bases and restricted
two-parameter quantum groups of type B. J. Geom. Phys. 60(3), 430–453.
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Cartan Part of Universal R-Matrix (R0)

Key Definitions
◦ ¤lnA: Matrix with entries ( ¤lnA)ij = ln(aij) = h〈j, i〉 − h′〈i, j〉
◦ Dual elements: H∗i = hh′∑n

k=1 [( ¤lnA)−1] ikH′k (satisfy 〈H∗i ,Hj〉 = 𝛿ij)

Theorem (Cartan Part R0)
The universal R-matrix of Cartan part U0

h,h′ (𝔤) is:

R0 = exp

( n∑
i=1

Hi ⊗ H∗i

)
= exp

©­«hh′
n∑

i,j=1
[( ¤lnA)−1] ijHi ⊗ H′j

ª®¬
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Quasi-R-Matrix (R+)

Key lemma [Ro02, Cor.29] (Parallel result in costandard factorization)
Let Δ(E𝛽) = E𝛽 ⊗ 1 + 𝜔𝛽 ⊗ E𝛽 + Par(E𝛽), The summation Par(E𝛽) has the
factorizable property:

Par(E𝛽) =
∑
(∗) E𝛼i1

· · · E𝛼ik
𝜔Σ𝛼j𝜄

⊗ E𝛼j1
· · · E𝛼jk′

,

where the summation is made on non-increasing products 𝛼i1 ≽ · · · ≽ 𝛼ik ,
𝛼j1 ≽ · · · ≽ 𝛼jk′ � 𝛽 � 𝛼ik , and (∗) are some scalars.

[Ro02] Rosso, M. (2002) Lyndon bases and the multiplicative formula for R-matrices.
(preprint)
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Theorem (Orthogonal Dual Bases of U+ and U−)
For Eu =

∏�
𝛼∈Φ+ E

u𝛼
𝛼 and F v =

∏�
𝛼∈Φ+ F

v𝛼
𝛼 :

〈F u, Ev〉 = 𝛿u,v

�∏
𝛼∈Φ+
(u𝛼)!〈𝜔′𝛼 ,𝜔𝛼 〉 〈F𝛼, E𝛼〉u𝛼

where (m)!q =
∏m

k=1
1−qk

1−q (q-factorial)
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Values of the pairing 〈F𝛼, E𝛼〉

The the nonzero 〈F𝜃 , E𝜃 〉 can be determined by induction.

〈F𝛼i , E𝛼i〉 = (si − ri)−1

〈F𝜃 , E𝜃 〉 = 〈[F𝜓, F𝜙] 〈𝜔′𝜙 ,𝜔𝜓 〉−1 , Δ(E𝜃 )〉

= 〈F𝜓 ⊗ F𝜙 − 〈𝜔′𝜙, 𝜔𝜓〉−1F𝜙 ⊗ F𝜓 , E𝜃 ⊗ 1 + 𝜔𝜃 ⊗ E𝜃 + Par(E𝜃 )〉
= (k𝜃

𝜓,𝜙 − 〈𝜔′𝜙, 𝜔𝜓〉−1k𝜃
𝜙,𝜓) · 〈F𝜙, E𝜙〉〈F𝜓, E𝜓〉 ,

k𝜃
𝜓,𝜙 = 0 by Key Lemma.

The detailed value of k𝜃
𝜙,𝜓 ≠ 0 is determined either by applying the

skew-derivation 𝜕𝜓 to the root vectors E𝜃 , or by employing the detailed
expressions of Δ(E𝜃 ) established in the existing literature.
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As introduced in [BW04,BGH07], for each simple root 𝛼i, there is a
skew-derivation 𝜕i : U+𝛾 → U+𝛾−𝛼i for 𝛾 ∈ Q+ defined inductively by

𝜕i(1) = 0, 𝜕i(ej) = 𝛿ij, 𝜕i(xx′) = 〈𝜔′𝛾′ , 𝜔i〉𝜕i(x)x′ + x𝜕i(x′),

for all x ∈ U+𝛾 and x′ ∈ U+𝛾′ . When applying it to the root vectors E𝜃 , one can
verify directly that

Lemma (Computing partial operator)
For any non-simple root 𝛾 = 𝛼i1i2 · · ·ikik+1 whose corresponding path in the
Lyndon tree is sequentially labeled by i1, i2, · · · , ik, ik+1, the following identity
holds for all m = 1, . . . , n that

𝜕m(Ei1 · · ·ikik+1) = 𝛿m,ik+1 (1 − 〈𝜔′ik+1 , 𝜔i1 · · ·ik〉〈𝜔′i1 · · ·ik , 𝜔ik+1〉) Ei1 · · ·ik

+ 〈𝜔′ik+1 , 𝜔m〉 [𝜕m(Ei1 · · ·ik), eik+1] 〈𝜔′k+1,𝜔i1 · · ·ik 𝜔
−1
m 〉 .
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The Universal R-Matrix

From the theorem of orthogonal dual bases of U+ and U−, we have

Theorem (Quasi-R-Matrix R+)

R+ =
�∏

𝛼∈Φ+
exp〈𝜔′𝛼 ,𝜔𝛼 〉

(
E𝛼 ⊗ F𝛼
〈F𝛼, E𝛼〉

)
, where expq(x) =

∞∑
m=0

xm

(m)!q

Main result: Universal R-Matrix

R = R+R0 ∈ Uh,h′ (𝔤)⊗̂Uh,h′ (𝔤)

=

( �∏
𝛼∈Φ+

exp〈𝜔′𝛼 ,𝜔𝛼 〉
E𝛼 ⊗ F𝛼
〈F𝛼, E𝛼〉

)
exp

©­«hh′
n∑

i,j=1

[
( ¤lnA)−1]

ij Hi ⊗ H′j
ª®¬ ,
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Application 1: Basic R-Matrix for Classical Types

Natural Representations of Classical Types

• Type An: L(𝜛1) of type 1 and L(𝜀1) of type 𝜃 : 𝛼i ↦→ (rs)
1

n+1

V𝜃 ⊗ L(𝜛1)
𝜙
� L(𝜀1)

• Type Bn/Cn/Dn: L(𝜛1) (natural N-dimensional representation)

Basic R-Matrix Calculation: R = (T1 ⊗ T1)(R), where T1 is the natural
representation
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Corollary
(Type A, L(𝜀1)) Recover the basic R-matrix of Ur,s(𝔰𝔩N=n+1) in [BW04]:

n+1∑
i=1

Eii ⊗ Eii + r
∑
i<j

Eii ⊗ Ejj + s−1
∑
i>j

Eii ⊗ Ejj + (1 − rs−1)
∑
i<j

Eij ⊗ Eji;

(Type A, L(𝜛1)) Compute the basic R-matrix of Ur,s(𝔰𝔩N=n+1):

n+1∑
i=1

Eii ⊗ Eii + s−1
n∑

k=1

n+1∑
i=1
(rs) k

n+1 Ei+k,i+k ⊗ Eii + (1 − rs−1)
∑
i<j

Eij ⊗ Eji.

where x is the number in the range {1, 2, · · · , n + 1} that is congruent to x
modulo n + 1.

[BW04] Benkart, G., Witherspoon, S. (2004) Two-parameter quantum groups and Drinfel’d
doubles. Algebras Represent. Theory 7(3), 261–286.
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Remark
Now, one could calculate the relationship between two basic R-matrices in the
braided tensor category Rep(Ur,s(𝔤)):

cX,Y = R̂X,Y = P ◦ R|X⊗Y
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Type BCD, L(𝜛1)
Recover the basic R-matrices of U√r,√s(𝔰𝔬N=2n+1), Ur,s(𝔰𝔭N=2n) and
Ur,s(𝔰𝔬N=2n) in [HXZ24, ZHJ24, ZHX24]:

r− 1
2 s 1

2
∑

i≠N+1
2

Eii ⊗ Eii + r 1
2 s− 1

2
∑

i≠N+1
2

Eii ⊗ Ei′i′ + r− 1
2 s− 1

2
∑
(i,j) ∈I

Eii ⊗ Ejj + r 1
2 s 1

2
∑
(i,j) ∈II

Eii ⊗ Ejj

+E N+1
2 , N+1

2
⊗ E N+1

2 , N+1
2
+

∑
i≠N+1

2

Eii ⊗ E N+1
2 , N+1

2
+

∑
i≠N+1

2

E N+1
2 , N+1

2
⊗ Eii

+(r− 1
2 s 1

2 − r 1
2 s− 1

2 )
(∑

i<j
Eij ⊗ Eji −

∑
i<j
(r− 1

2 s 1
2 )𝜌j−𝜌i𝜏i𝜏jEij ⊗ Ei′j′

)
,

where the second line is omitted for Ur,s(𝔰𝔭2n), Ur,s(𝔰𝔬2n). The subscript
sets I, II are shown in Figure. The notation i′ := N + 1 − i,

[HXZ24] Hu, N., Xu, X., Zhuang, R. (2024) RLL-realization of two-parameter quantum affine
algebra of type B(1)n and regulated quantum Lyndon bases. arXiv:2405.06587.
[ZHJ24] Zhong, X., Hu, N., Jing, N. (2026) RLL-realization of two-parameter quantum affine
algebra of type C(1)n . J. Algebra Appl. (to appear).
[ZHX24] Zhuang, R., Hu, N., Xu, X. (2024) RLL-realization of two-parameter quantum affine
algebra of type D(1)n . Pacific J. Math. 329 (2), 357–395. 32 / 47



(𝜌1, 𝜌2, · · · , 𝜌N) =


(
n − 1

2 , n −
3
2 , · · · ,

3
2 ,

1
2 , 0,−

1
2 ,−

3
2 , · · · ,−n + 3

2 ,−n + 1
2

)
, 𝔤 = 𝔰𝔬2n+1,

(n, n − 1, · · · , 2, 1,−1,−2, · · · ,−n + 1,−n) , 𝔤 = 𝔰𝔭2n,

(n − 1, n − 2, · · · , 1, 0, 0,−1, · · · ,−n + 2,−n + 1) , 𝔤 = 𝔰𝔬2n,

𝜏i =

{
1, i ⩽ n
−1, i > n

, for 𝔤 = 𝔰𝔭2n, 𝜏i ≡ 1, for 𝔤 = 𝔰𝔬N.

Figure: Image of R0 : Windmill symmetry in subscript sets I & II
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Corollary (recently, Type G2, L(𝜛1))

(T1 ⊗ T1)(R) =
7∑

i,j=1
TijEii ⊗ Ejj +

∑
i,j: i<j

(
XijEij ⊗ Eji + YijEij ⊗ Ēīj

)
+

∑
(n,k,l)

(
MI

n,k,lE1,n ⊗ Ek,l + NI
n,k,lE1,n ⊗ Ēl,k̄

+MII
n,k,lEl,k ⊗ En,1 + NII

n,k,lEl,k ⊗ E1̄,n̄

+MIII
n,k,lEk̄,̄l ⊗ En,1 + NIII

n,k,lEk̄,̄l ⊗ E1̄,n̄

+MIV
n,k,lEn̄,1̄ ⊗ Ēl,k̄ + NIV

n,k,lEn̄,1̄ ⊗ Ek,l
)

T =

©­­­­­­­­­­«

s
r rs2 1

r2s 1 r2s 1
rs2

r
s

1
r2s

s
r

1
rs2 1 rs2 r

s r2s
rs2 r2s s

r 1 r
s

1
r2s

1
rs2

1 1 1 1 1 1 1
1

rs2
1

r2s
r
s 1 s

r r2s rs2

r2s r
s rs2 1 1

rs2
s
r

1
r2sr

s
1

rs2 r2s 1 1
r2s rs2 s

r

ª®®®®®®®®®®¬
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X =

©­­­­­­­­­­­­«

0 −r+s
r

−r+s
r

−r4+r3s−rs3+s4

rs3
−r4+r2s2−rs3+s4

rs3
−r4+r2s2−rs3+s4

rs3
(r−s)2 (r+s) (r2+s2 )2

rs6

0 0 −r3+s3

rs2
−r2+s2

rs
−r+s

r
r6−r5s−rs5+s6

rs5
−r4+r2s2−rs3+s4

rs3

0 0 0 −r2+s2
rs

(r−s)2 (r+s)
rs2

−r+s
r

−r4+r2s2−rs3+s4

rs3

0 0 0 0 −r2+s2
rs

−r2+s2
rs

−r4+r3s−rs3+s4

rs3

0 0 0 0 0 −r3+s3

rs2
−r+s

r
0 0 0 0 0 0 −r+s

r
0 0 0 0 0 0 0

ª®®®®®®®®®®®®¬
,

Y =

©­­­­­­­­­­­­«

0 −r+s
rs3

r2 (r−s)
s3

−r4+r3s−rs3+s4

rs3
(r−s) (r3+rs2+s3 )

s4 − (r−s) (r3+rs2+s3 )
s7 0

0 0 − r(r3−s3 )
s

r4−r2s2
s − r4 (r−s)

s2 0 − r3 (r−s) (r3+rs2+s3 )
s4

0 0 0 −r2+s2
rs 0 − r(r−s)

s5
(r−s) (r3+rs2+s3 )

s4

0 0 0 0 −r2+s2

s2
(r−s) (r+s)

s5
−r4+r3s−rs3+s4

s4

0 0 0 0 0 −r3+s3

r2s4
r2 (r−s)

s3

0 0 0 0 0 0 −r2(r − s)
0 0 0 0 0 0 0

ª®®®®®®®®®®®®¬
,

M□ =

©­­­­­­­«

I:
{
−r2+s2

r2s3 , r2−s2

s2 , r(r−s) (r+s)
s3

}
II:

{
−rs(r − s), r(r−s)

s2 , r(r−s)
s2

}
III:

{
−r+s

s , r(r−s)
s2 , −r+s

s

}
IV:

{
−r2+s2

rs , (r−s) (r+s)
rs4 , r4−r2s2

s

}
ª®®®®®®®¬
, N□ =

©­­­­­­­«

I:
{
−(r2−s2 )

rs , r2−s2

s2 , −(r
2−s2 )
rs

}
II:

{
−(r−s)

r2s2 , r−s
rs3 , −rs(r − s)

}
III:

{
−(r−s)

s , r2(r − s), r−s
s4

}
IV:

{
−r(r2 − s2), r4−r2s2

s , −(r
2−s2 )

r2s3

}
ª®®®®®®®¬
.

(n, k, l) = (2, 4, 3), (4, 6, 3), (3, 4, 2), n̄ := 8 − n
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The weight module V = L(𝜛1) has the following property

V ⊗ V � S0(V ⊗ V) ⊕ V ⊕ Λ(V ⊗ V) ⊕ S′(V ⊗ V)
� L(0) ⊕ L(𝜛1) ⊕ L(𝜛2) ⊕ L(2𝜛1),

dim : 1 7 14 27

Spec(R̂) : r6

s6 − r3

s3 − 1 s
r

with associated highest weight vectors:

L(0) : 𝔳0 = v1,7 − r2s v2,6 +
r2

s2 v3,5 −
r3

s3 v4,4 +
r3

s3 v5,3 −
r6

s3 v6,2 +
r5

s5 v7,1,

L(𝜛1) : 𝔳𝜛1 = v1,4 − r2s v2,3 +
r2

s2 v3,2 −
r3

s3 v4,1,

L(𝜛2) : 𝔳𝜛2 = v1,2 − r2s v2,1,

L(2𝜛1) : 𝔳2𝜛1 = v1,1.

The minimal polynomial of R̂ is(
t − r6s−6

) (
t + r3s−3

)
(t + 1)

(
t − r−1s

)
.
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G2-FRT [HW26’]
The unital associative algebra U(R) is generated by ℓ+ij , ℓ

−
ji , 1 ⩽ i < j ⩽ 7, and

invertible elements ℓ+ii , ℓ
−
ii , 1 ⩽ i ⩽ 7 , with the defining relation

RL±1 L±2 = L±2 L±1 R, RL+1L−2 = L−2 L+1R,

L±C L±tC−1 = I,

DL± = L±t
1 L±t

2 D,

where L± = (ℓ±ij ) with ℓ+ij = ℓ−ji = 0 when 1 ⩽ j < i ⩽ 7, matrices L±1 = L± ⊗ 1,
L±2 = 1 ⊗ L±, and matrices C and D defined by the Clebsch–Gordan
coefficients from the injections L(0) ↩→ V ⊗ V and V = L(𝜛1) ↩→ V ⊗ V

[HW26’] Hu, N., Wang, H. (2026) On Two-parameter Quantum Groups: FRT-Formalism and
RLL-Realization of Type G2. (work in progress)
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Application 2: Central Elements

Theorem [HW26] Harish-Chandra theorem for Ur,s(𝔤)
• The HC map 𝜉 = 𝛾−𝜌𝜋 : Z(Ur,s(𝔤)) → U0 is injective.
• For 𝜆 ∈ P+ ∩ Q, ∃!z𝜆 ∈ Z(U), s.t. 〈z𝜆 |−〉 = trL(𝜆) (− ◦ Θ), and

z𝜆 =
∑
𝜏⩽𝜆

∑
𝜇∈Q+

∑
i,j
(rs−1)−(𝜌,𝜏+𝜇) 〈𝜔′𝜇, 𝜔𝜏+𝜇〉tr(v𝜇j u𝜇

i ◦ P𝜏) v𝜇i 𝜔
′
𝜏𝜔
−1
𝜏+𝜇u𝜇

j .

• When rank n is even, 𝜉 : Z(Ur,s(𝔤)) � (U0
♭
)W.

When rank n is odd, Im(𝜉) ⊇ (U0
♭
)W ⊗ K[z∗, z−1

∗ ].

[HW26] Hu, N., Wang, H. (2026) Harish-Chandra Theorem for Two-parameter Quantum
Groups. Forum Math. 38 (1), 193–214.
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The explicit generators and defining relations for Z(U) are subsequently given
in [CHW25], analogous to those for Uq(𝔤) presented in [LXZ16].

Theorem [HW26] The weight lattice type Ŭr,s(𝔤)
• When n is even, the centre Z(Ŭr,s) � (Ŭ0

♭
)W � K(Ur,s) � K(Uq), and

Z(Ŭr,s) = K[z𝜛1 , · · · , z𝜛n] .

When n is odd, the centre Z(Ŭr,s) ⊇ K[z𝜛1 , · · · , z𝜛n] ⊗ K[z
1
ℓ
∗ , z
− 1

ℓ
∗ ], where

ℓ = 2, except ℓ = 4 for D2k+1.

[LXZ16] Li, L., Xia, L., Zhang, Y. (2016) On the center of the quantized enveloping algebra of
a simple Lie algebra. arXiv:1607.00802.
[CHW25] Chen, K., Hu, N., Wang, H. (2025) Harish-Chandra Theorem for the
Multi-Parameter Quantum Groups of Okado-Yamane Type. arXiv:2505.18599

39 / 47



Application 2: Γ operator

Central elements can be constructed by taking the quantum trace of certain
operators Γ ∈ Ur,s(𝔤) ⊗ End(L(𝜆)), analogous to the construction in Uq(𝔤)
[ZGB91]. It requires the map Θ : M→ M defined by

m ↦→ (rs−1)−(𝜌,𝜆)m, ∀m ∈ M𝜆, 𝜆 ∈ P.

Theorem [HW26]
Let 𝜆 ∈ P+ and 𝜁 : Ur,s(𝔤) → End(L(𝜆)) be the weight representation. If
there is an operator Γ ∈ Ur,s(𝔤) ⊗ End(L(𝜆)) such that

Γ ◦ (id ⊗ 𝜁)Δ(x) = (id ⊗ 𝜁)Δ(x) ◦ Γ, ∀ x ∈ Ur,s(𝔤),

then the element c𝜆 = tr2(Γ(1 ⊗ Θ)) ∈ Z(Ur,s(𝔤)).

Write ΓΔ(x) = Δ(x) Γ for short. Now we construct such an operator.
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In Uh,h′ (𝔤) we have Δop(x)R = RΔ(x). Since R = R+R0, let
Ψ(·) = R0(·) (R0)−1 be an automorphism of Uh,h′ (𝔤) ⊗̂2. In fact, this
automorphism can be restricted in Ur,s(𝔤)⊗2.

Lemma

(1) Let x𝛼 ∈ U𝛼, y𝛽 ∈ U𝛽 , 𝛼, 𝛽 ∈ Q and 𝜔0 = 𝜔′0 = 1, then

Ψ(x𝛼 ⊗ y𝛽) = R0(x𝛼 ⊗ y𝛽) (R0)−1 = x𝛼𝜔−1
𝛽 ⊗ 𝜔′𝛼y𝛽 .

(2) Ψ|Ur,s (𝔤)⊗2 is an automorphism of Ur,s(𝔤)⊗2.
(3) For convenience, this restriction is again denoted by Ψ. Then we have

Δop(x)R+ = R+Ψ(Δ(x)), ∀x ∈ Ur,s(𝔤).

To the target ΓΔ(x) = Δ(x) Γ, one needs another operators to cancel the effect
of op and Ψ.
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Set operators: K𝜆 =
∑

𝜇∈Q 𝜔−1
𝜇 ⊗ P𝜇, K ′𝜆 =

∑
𝜇∈Q 𝜔′𝜇 ⊗ P𝜇, where P𝜇 is the

𝜇-weight space projector.

Theorem
For all weight 𝜆 ∈ P+ ∩ Q and all x ∈ Ur,s(𝔤), we have the following relations

(1) K𝜆Δ(x) = Ψ(Δ(x))K𝜆, K ′𝜆Δop(x) = (ΨΔ(x))opK ′𝜆;
(2) R+K𝜆Δ(x) = Δop(x)R+K𝜆, (R+)opK ′𝜆Δop(x) = Δ(x) (R+)opK ′𝜆;
(3) ΓΔ(x) = Δ(x)Γ, where Γ := (R+)opK ′𝜆R+K𝜆.
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Theorem (Central Elements c𝜆, 𝜆 ∈ P+ ∩ Q)
Let Γ = (R+)opK ′𝜆R+K𝜆.
The element c𝜆 = Tr2 (Γ(1 ⊗ Θ)) belongs to the center Z(Ur,s(𝔤)), and

c𝜆 =
∑

(𝜂;𝛾,a,b) ∈I

〈𝜔′𝛾 , 𝜔𝜂〉 Tr(E 〈a〉F 〈b〉P𝜂)
(rs−1) (𝜌,𝜂)P 〈a〉P 〈b〉

· F 〈a〉𝜔′𝜂−𝛾𝜔−1
𝜂 E 〈b〉 ,

where P 〈u〉 = 〈F 〈u〉 , E 〈u〉〉 and the index set
I =

{
(𝜂; 𝛾, a, b) | 𝛾 ∈ Q+; 𝜂, 𝜂 − 𝛾 ∈ Wt(L(𝜆)); a, b ∈ In, |a| = |b| = 𝛾

}
.

In fact, the element c𝜆 = z𝜆, which 〈z𝜆 | −〉 = trL(𝜆) (− ◦ Θ).

While the proof for the Harish-Chandra theorem [HW26] relies solely on the
existence and formal notation of the dual basis, we now supplement it by
giving explicit expressions for all E𝛼, F𝛼 and P𝛼.
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This method could be naturally extended to the two-parameter quantum group
Ŭr,s(𝔤) of weight lattice type, whose Cartan part is generated by
{𝜔±1

𝜛i , 𝜔
′±1
𝜛i}

n
i=1.

Corollary
For each 𝜆 ∈ P+, we define

K̆𝜆 =
∑
𝜇∈P

𝜔−1
𝜇 ⊗ P𝜇, K̆ ′𝜆 =

∑
𝜇∈P

𝜔′𝜇 ⊗ P𝜇

on Ŭr,s ⊗ End(L(𝜆)). Then one could get

Γ̆ := (R+)opK̆ ′𝜆R+K̆𝜆, and c𝜆 = Tr2
(
Γ̆(1 ⊗ Θ)

)
∈ Z(Ŭr,s(𝔤)).
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Application 3: two-paramater classical r-matrices
The classical r-matrix for any simple Lie algebra 𝔤 can be extracted from the
universal R-matrix.
In 𝔰𝔩2 case we have:

R = exprs−1 ((s − r) e ⊗ f) exp
(

hh′
h − h′H ⊗ H′

)
Take the classical limit by letting ℏ→ 0 when h = 𝜖1ℏ and h′ = 𝜖2ℏ:

rcl = (𝜖2 − 𝜖1)e ⊗ f + 𝜖1𝜖2
𝜖1 − 𝜖2

H ⊗ H′

𝛿(x) := [Δ(x), rcl]

𝛿(H) = 𝛿(H′) = 0, 𝛿(e) = −𝜖1e ∧ H, 𝛿(f) = 𝜖2f ∧ H′

Particularly, when (𝜖1, 𝜖2) = (1,−1), it recovers

2e ⊗ f + 1
2H ⊗ H′
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Further Directions
• Two-parameter quantum group of type G2: FRT–Chevalley and

RLL–Drinfeld isomorphism, and applications to G2-spider invariants
• Applications to RT/TV invariants
• In root of unity settings (exotic small[HX26]), non-semisimple

[HX26] Hu, N., Xu, X. (2026) Novel isoclasses of one-parameter exotic small quantum groups
originating from a two-parameter framework. Bull. Sci. Math. 206, 103738.
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Thank you for your attention!
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