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Introduction and Motivation

Key Developments on Two-Parameter Quantum Groups

e Systematic construction and weight module theory for finite and affine
types c.g.. [BW04,BGHO7,HRZ08]

e Explicit basic R-matrices and their applications to FRT-reconstruction and
RILL-realization e.g. yLi4,Hxz24.2H24.7HX24]

[BWO04] Benkart, G., Witherspoon, S. (2004) Two-parameter quantum groups and Drinfel’d
doubles. Algebras Represent. Theory 7(3), 261-286.

[BGHO7] Bergeron, N., Gao, Y., Hu, N. (2007) Representations of two-parameter quantum

orthogonal groups and symplectic groups. In: AMS/IP Stud. Adv. Math., 39, Amer. Math.

Soc., Providence, RI, 1-21.

[HRZ08] Hu, N., Rosso, M., Zhang, H. (2008) Two-parameter quantum affine algebra

Uy, s(sly,), Drinfel’d realization and quantum affine Lyndon basis. Commun. Math. Phys.

278(2), 453-486.
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[JL14] Jing, N., Liu, M. (2014) R-matrix realization of two-parameter quantum group
Ur s(gl,,). Commun. Math. Stat. 2, 211-230.
[HXZ24] Hu, N., Xku, X., Zhuang, R. (2024) RLL-realization of two-parameter quantum affine

algebra of type B;l) and regulated quantum Lyndon bases. arXiv:2405.06587.
[ZHJ24] Zhong, X., Hu, N., Jing, N. (2026) RLL-realization of two-parameter quantum affine

algebra of type Cg,l), J. Algebra Appl. (to appear).
[ZHX?24] Zhuang, R., Hu, N., Xu, X. (2024) RLL-realization of two-parameter quantum affine
algebra of type Di,l). Pacific J. Math. 329(2), 357-395.

Motivation
> Open Problem: the existence and explicit construction of the universal
R-matrix for all two-parameter quantum groups

> Universal R-matrix is a prerequisite for formulating isomorphism theorems:

finite

FRT &S Chevalley,  RLL &™S Drinfeld

> Topological framework is necessary for dual basis in Cartan part

[KTOO0] Kassel, C., Turaev, V. (2000) Biguantization of Lie bialgebras. Pacific J. Math. 195(2),

297-369.
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Main Results

Main Contributions

1. Introduced a topological two-parameter quantum group

h h hH,

) n
Unw(g), r=€e,s=¢e",wij=¢€ ’,w;zehHi

inspired by Drinfeld’s quantum double construction
2. Explicit universal R-matrix for Uy, 4 (g)

Ea ® Fa N T ,
R = l_él exp<wiwmn> m exp hh Zl [(InA) 1]’JH'® ILIJ
acdt ij=

3. Uniformly recovered all known basic R-matrices of classical types
(recently construct one for type Go)

4. Central elements ¢y = Try ((R")PK,R* K1 (1 ® ©)) and ¢y = z3, the
unique one (z, | —) = try(q)(— o ©), refining the Harish-Chandra theory
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@ Introduction and Motivation
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Preliminaries: Basic Notations

(ci)

3~0n6
< |

rs
K> Q(r,s)

ay = i s Gid
A= (ay)

Root system and simple root set of simple Lie algebra g
Cartan matrix of g

Root lattice and weight lattice

Euler form of g

det(C) = min{ke Z* | kP C Q}

Two indeterminates

A field of characteristic zero containing r#, s#
Structure constant of U, s(g)

Structure constant matrix
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Here, the Euler form of g is the bilinear form (—, —) defined on @ satisfying

d,'C,'J' i< j,
<I’J> = <a/f’ aj) = di i=.ja
0 i> .

For type D, we revise (n—1,n) = -1, (n,n—1) =1 as in [BGH06, HP12]. It
naturally extends to the weight lattice P such that

(@), @) = Z Kk, Iy

k,I=1

[BGHO6] Bergeron, N., Gao, Y., Hu, N. (2006) Drinfel’d doubles and Lusztig’s symmetries of
two-parameter quantum groups. J. Algebra 301(1), 378-405.

[HP12] Hu, N., Pei, Y. (2012) Notes on two-parameter groups (II). Comm. Algebra 40(9),
3202-3220.
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Definition of U, s(g)

Hopf Algebra U, s(g) (Generators: e, f;, w™? a);.il)

,' 9
o (A1) {w;, w’} are invertible and pairwise commute
r—1 1

-1 _ -
o (A2) Wi€jw; = = dji€j, w;ejwi = a,.j €j,

wifiw;t = a7, wifiw]™ = ayf;
o (A3) [e) f] = 65—~
o (A4)(adje)'"(e) =0,  (ad, RH'"U(f =0,  (i#))
o (Cl) {wj, w}} are group-like
o (C2) ejis (1, w;)-skew primitive, f;is (w?, 1)-skew primitive

Skew-dual pairing (—, — ) : U,s(b7) X U, 5(b*) - K

<ﬂ" e_/> = 6(/:’ ((L):,Q)J> = aij,
1 1

(Wi w]) = (), w)™ (7=+1)
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Definition of Uy (g)

Topological Hopf Algebra Uy, iy (g) (Generators: e;, f;, H;, H)

o Overafield K > Q[[h, H]]

or=el s=e";w =M, w;=e

W H,

o (A1) {H;, H:} are pairwise commute

(A2) [Hi, e = hIn(aj)e;,  [H;. el = —h""tIn(ay)e;
[HI’ 6] = _h_l |n(aj,‘)f', [H’ f] = h’_l |n(au)f

O

hHiH H—(hth)di ginh 2Pz h”

sinh = h)d

(A4) (ad/e)'~Ci(ej) =0, (ad, f)1=Ci(f;) = 0, (i #J)
o (Cl) {H,, H’} are primitive

o (C2) ejis (1, eM™)-skew primitive, f; is (e, 1)-skew primitive

diH,
(A3) [ei fi] = 5u% =dje

e’

O

O
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Ups(8) = Ugl@) : r— g s—>q o=

Unw(g) = Un(g) :  h— N, 0 — —h, Hi=H,

Extended skew-dual pairing (—, —) : Upp (b7) X Upp (b") — K

1 -
(ﬁ,ej>=5ijsi_ri=5ij 1<ij<n,

odil’ _ edih
(Hj, Hp) = (i) In((w], 7))
= (hh') "1 (Wi ) = G ), 1<ij<n,
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Weight Modules and Convex PBW-Type Lyndon Basis

Weight Modules Convex PBW-Type Basis
e Verma module M(1) and irreducible e Standard Lyndon words <
quotient L(A) positive roots
e Weight space decomposition: e Quantum root vectors
L(A) = @ns/l L(A)y &, =[8a, aﬁ]w,’;,wﬁ) inductively
e Type o weight space: M, from costandard decomposition
(trivial o = type 1) (@, B) of y
e Basis of U*:
{ITzcor €a° | na € N}
e Basisof U™:

{Igeqr Fa | ng € N}
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Weight Modules

When 1 € P, denote M() := M(o%) = U, s ®g 0%, and L(2) the unique
irreducible quotient of M(A).

(For Us(0)) o' (@) = | [(@hon, 0% = [(@hwp™;
1 1

n n
(For Up i (8)) 0 (H) == h™! Zajln aj, oMH) =—h"1 Zajln ajj.
=1 =1

Constructions for Uy, s(g) swoscrorpurio] which could be naturally extended to
the version of Up, ().

[PHR10] Pei, Y., Hu, N., Rosso, M. (2010) Multi-parameter quantum groups and quantum
shuffles (I). Contemp. Math., 506, Amer. Math. Soc., Providence, RI, 145-171.
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Lemma [BW04,BGH0O7,PHR10]
Let v, be a highest weight vector of M(2) for A € P*. Then

L) = M(Q) /(Zn: URSTH ),
=1

Also, it has the decomposition of weight space L(1) = EB,] <1 L(A)5, where

LDy = {x€ L(A) | wi.x= 0" (wi)x = (w;,, wj)x,

wix=oM(w))x= (W), w,) 'x 1 <i< n}.
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o-type weight space
For each U, s(g)-mod M, each weight € P and each group homomorphisms
o (ZD,+) — (K*,-), define o-type weight space

Mo :={me M| w;.x=0c(a)o"(w)x, w;.x=0c(a)e"(w))x, 1<i< n}.

Notice that M= (P, M7 := D, D, cp My, If M= M7, we say that M is
of type . In particular, if o is trivial, we say it is of type 1.
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The convex PBW-type basis

We recall the combinatorial construction of the convex PBW-type basis for the
two-parameter quantum group U, s(g) (e.g., [BHO8, CHW23, HXZ24])

[BHO8] Bai, X., Hu, N. (2008) Two-parameter quantum groups of exceptional type E-series
and convex PBW-type basis. Algebra Colloq. 15(4), 619-636.

[CHW23] Chen, X., Hu, N., Wang, X. (2023) Convex PBW-type Lyndon bases and restricted
two-parameter quantum group of type F4. Acta Math. Sin.-Engl. Ser. 39, 1053-1084.
[HXZ24] Hu, N., Xu, X., Zhuang, R. (2024) RLL-realization of two-parameter quantum affine

algebra of type B(nl) and regulated quantum Lyndon bases. arXiv:2405.06587.
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A the ordered alphabet set {1,2,--- ,n} withl <2 <--- < n.
A* the set of all words in A with the induced lexicographical order <
Lyndon word / aword / € A%, s.t. | < all its proper right factors
Lyndon decomposition a factorization / = uv into two proper Lyndon words (u, v)
(Co)standard pair of /  the Lyndon decomposition / = uv, where u (resp. v) is the shortest
Lyndon word that is a proper left factor of /
4 Lalonde-Ram correspondence: ®* « standard Lyndon words in A*
aj o C(a) =i
< the convex ordering < on ®* induced by ¢
(Co)standard pair of y  the pair (@, 8) in @, s.t. y = a + 3, £(y) = £(a){(B) is (co)standard

[LR95] Lalonde, M., Ram, A. (1995) Standard Lyndon bases of Lie algebras and enveloping
algebras. Trans. Amer. Math. Soc. 347(5), 1821-1830.
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Convex Ordering

i i+1 n-1 n n n-1 i+2 i+l
Type B,

@12 <@1,3 < <ALy < ALpel <ALy <00 <@y <@y

< @23 <--- < @2 p < @2 n+l < @ <. < @2 3

< @p-1,n < Up-1,n+1 < Up-1,p

< &p,p+l-
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Write E,, = €1, Fo, = fi (1 < i< n). For each non-simple positive root

v € ®F with its costandard pair (a, B8) (i.e., the unique pair (a, 8) of positive
roots satisfying y = @ + f and @ < y < B, where « is maximal), the quantum
root vectors &,, and ¥, can be defined through (r, s)-bracket [—, =] )
inductively:

&) = (6 Ealiupn) = Euba (Uhpw)EaEn
Fy =[5 Fol(wp.wpt = T5Fa = (0o, wp) " FaTp.
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Theorem (B06,BH08,C08,CHW23,HW09,HW 10)
{I1,cor Ea® | ng € N} and {[1;cqr Fa® | na € N} are convex PBW-type

aed

Lyndon bases of the algebra U* and U™, respectively.

[BO6] Bai, X. (2006) Two-parameter quantum groups of type E-series & restricted
two-parameter quantum groups of type D. Ph.D. Dissertation, East China Normal University.
[CO8] Chen, R. (2008) Restricted two-parameter quantum groups of type C. Ph.D. Dissertation,
East China Normal University.

[HWO09] Hu, N., Wang, X. (2009) Convex PBW-type Lyndon basis and restricted
two-parameter quantum groups of type Gp. Pacific J. Math. 241(2), 243-273.

[HW10] Hu, N., Wang, X. (2010) Convex PBW-type Lyndon bases and restricted

two-parameter quantum groups of type B. J. Geom. Phys. 60(3), 430-453.
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e The Topological Two-Parameter Quantum Group Up i (g)
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Cartan Part of Universal R-Matrix (R°)

Key Definitions
o InA: Matrix with entries (IhA),-j = In(aj) = h{j, iy = K’ {i, j
o Dual elements: H; = hh’ ZZZI[(IhA)‘l];kH;( (satisfy (H:, H;) = 6j)

Theorem (Cartan Part R°)

The universal R-matrix of Cartan part U‘Z (@) is:

RO = exp

=1 ij=1

Z H; ® H’;) = exp (hh’ Z [(InA) ™ H;® H,
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Quasi-R-Matrix (R")

Key lemma [Ro02, Cor.29] (Parallel result in costandard factorization)

Let A(Eg) = Eg ® 1 + wp ® Eg + Par(Ep), The summation Par(Eg) has the
factorizable property:

Par(aﬁ) = Z(*) 8@,‘1 o Saisz"l ® Sa'jl o adjk, B

J

where the summation is made on non-increasing products a;, > - -+ > «@;,,
aj, > - > aj, > B> aj,and (*) are some scalars.

[Ro02] Rosso, M. (2002) Lyndon bases and the multiplicative formula for R-matrices.

(preprint)
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Theorem (Orthogonal Dual Bases of U* and U")
For 8" =TI, cor Ea” and F* =1, cor Fa -

>
<7_-u’8v> = 6u,v l_l (Ua/)!(w;,wa)<7:a, 80>U¢1

acdt

where (m)!q =1, 11 a- (g-factorial)
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Values of the pairing (¥, E4)

The the nonzero (Fy, Eg) can be determined by induction.
<7—~a,-, 8(1,') = (Si - ri)_l

<%, 80> = <[7:l//’ T(ﬁ](w;’,ww)‘l 5 A(89)>
= <7’~¢ ® 7'~¢ - <a):z),a)¢>_17:¢ ® 7‘7& , g ®1l+wg®Eg+Par(Ey))
= (K} 5 = (W wy) kG ) - (Fgn 8} (Fyn Eu)
k‘9 = 0 by Key Lemma.

The detailed value of k(’ v ? 0 is determined either by applying the
skew-derivation d,, to the root vectors &g, or by employing the detailed
expressions of A(Ey) established in the existing literature.
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As introduced in [BW04,BGHO7], for each simple root «;, there is a
skew-derivation d; : U, — U;_,, for y € Q" defined inductively by

9i(1) =0, 0di(e) =6, 9i(xX) = (W), W)X + x0;(X),

forall xe U, and X' € U;/. When applying it to the root vectors Eg, one can
verify directly that
Lemma (Computing partial operator)

For any non-simple root y = aj,j,...i,i,,, whose corresponding path in the
Lyndon tree is sequentially labeled by i1, iz, - - - , ik, ix+1, the following identity
holds forallm=1, ..., nthat

am(8i1~~~ikik+1) = 6m,ik+1(1 - <w;k+1’ wil---ik><w;1...ik9 (‘-)ik+1>) 8f1~~~ik

+ <(,();k+1, U)m> [am(ail”'ik)’ eik+1](¢u;<+1,a),-14.

»ikw;})'
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The Universal R-Matrix

From the theorem of orthogonal dual bases of U* and U™, we have

Theorem (Quasi-R-Matrix R™)

> oo
Ea ® F, xM
R = eXPlw’ o ( a), where exp,(x) = —_—
QQ+ Py, wa) (FasEa) q mZ:O (m)!q

Main result: Universal R-Matrix

R = R*R® € Up 1 (8)®Up 1 (9)

: Ea ® Fa
= 1_[ exp<wb’ww> <?a,,80> ex

aedt

n
P hh'z [(hA) ] Hi® H |,

ij=1
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@ The Universal R-Matrix
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Application 1: Basic R-Matrix for Classical Types

Natural Representations of Classical Types

e Type Ap: L(w) of type 1 and L(g1) of type 0 : a; — (rs)ﬁ

Ve ® L(wy) 2 L(ey)

e Type B,/ C,/D,: L(w1) (natural N-dimensional representation)

Basic R-Matrix Calculation: R= (T, ® T7)(R), where T; is the natural
representation
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Corollary
(Type A, L(&1)) Recover the basic R-matrix of Uy s(SIn=p+1) in [BWO04]:

n+1
Z Ei® E,-,-+rz E;® Ejj+s_1ZEii® Ejj+ (1- rs_l)z E;j® Ej,';
=1 i<j i) i<j

(Type A, L(w1)) Compute the basic R-matrix of Uy s(SIn=p+1):

n+l n n+l
Z Eii @ Eij+ s Z Z(rs) i ik, itk ® Ejj+ (1 -rs 1) Z E’J ® EJI
k=1 i=1 i<j

where X is the number in the range {1, 2, - -- , n+ 1} that is congruent to x
modulo n+ 1.

[BWO04] Benkart, G., Witherspoon, S. (2004) Two-parameter quantum groups and Drinfel’d
doubles. Algebras Represent. Theory 7(3), 261-286.
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Remark

Now, one could calculate the relationship between two basic R-matrices in the
braided tensor category Rep(U, s(g)):

cx,y = Rxy=PoR|xey

L1 L(er
Me) e G

Lo | e |
kk v |L(=1)
RL(sl),L(el) = w - w\w RL(Wl),L(Wl)
v |L(=1)
Lot ] Lo

,1|

L(€1) L(E1) L(Ll) L(ng)
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Type BCD, L(w7)

Recover the basic R-matrices of U,; z(50n=2n+1), Ur,s(5Pn=2,) and
Uy s(50n-2n) in [HXZ24, ZHI24, ZHX24]:

11 11 11 11
r 2s2 Z Ei® Eji+r2s 2 Z E;® Epyp +r 2s 2 Z Ei® Ejj+r§s§ Z E,,®EJJ

il iz L (i.j)€l (ij)€ll

+En v ® Enea na + E E;i® EN+1 N1 + E Enia v ® Ejj
> 2 2 2 2 2
N+1 N+1

11 1.1 I .
+(r 252 —r2s I) ZEIJ® Eji_Z(r §S§)PJ p'T,’TjE,'j@ E,'fjf
i<j i<j

where the second line is omitted for U, s($P,,), Urs($02,). The subscript
sets /, Il are shown in Figure. The notation /" := N+ 1 — j,

[HXZ24] Hu, N., Xu, X., Zhuang, R. (2024) RLL-realization of two-parameter quantum affine
algebra of type BL“ and regulated quantum Lyndon bases. arXiv:2405.06587.

[ZHJ24] Zhong, X., Hu, N., Jing, N. (2026) RLL-realization of two-parameter quantum affine
algebra of type C,(ql) . J. Algebra Appl. (to appear).

[ZHX?24] Zhuang, R., Hu, N., Xu, X. (2024) RLL-realization of two-parameter quantum affine

algebra of type Df,l). Pacific J. Math. 329 (2), 357-395. 32/47



31
..35’5’0, Z

8 1
cLaTht o, —nt+ o, 8= S04,

2 2

(n,n-1,.--,2,1,-1,-2,..- ,—n+1,-n), 8= 5Py,
(n-1,n-2,---,1,0,0,-1,--- ,—n+2,-n+1), g = S02p,
1, i<n
= ) , for g=sp,, 7,=1, for g=sop.
-1, i>n
n+l n+2 n+3 2n  2n+l1
12 nl n ondl nd2 - 2l 2n
(9]
(&)
(4]
@

e @ @ @ @

e & o o o

Type Bn, s02141

Type Cy, span: Type Dy, s02,

Figure: Image of R° : Windmill symmetry in subscript sets I & IT
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Corollary (recently, Type Gy, L(w1))
7

(i@ TR = Y TyEi® Ej+ . (X,-J-E;j ® Ei+ YiE; ® EJ)

i1 i i<j

1 1 _

+ Z (Mn,k,lElv” ® Ek’/+ Nn,k,lEl,” ® El,k
(n,k,I)

11 11
+ M, Bk ® Eny+ Ny B ® Eq g
111 > 11 2 o
+ M Er7® Eny + I\lf,’k,,Ek’, ® E ;

MY, En ® Ejp+ WY, Enp® Ek,,)

n,k,I—n,

Ps r =2 - 55 TS
rszrzsfl—;%sé
T=f 1 1 1 1 1 1 1
SR R B
grs—QS].rz—sl’-r
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0 zrts  zres  —faPsorsed ARRorsest cARPordast (092 () (P45)?
r r 55 r: rs3 W of R
0 0 —135-;-53 -+ —rts rﬁ—rr’s;srss+s‘5 =P 53—rs3+s
rs r re r
o 0 0 —Pa (=9(re) s —tPd e
S3
X=lo o 0 0 e P42 —r4+r3rssgrs3+s" .
rs rs r
- _
0 0 0 0 0 e o
0 0 0 0 0 0 =hs
0 0 0 0 0 0 0
0 —r+s 1'2(;—5) —r“+r3s$;rs7’+s4 (f—S)(fi:'fszﬂj) _(f—S)(fz;'fSQ"'Sa) 0
0 r(‘s; _r(r3753) r4:r252 _r4(r75) Os _I3(r75)(r3+r52+53)
s
0 0 05 e 052 ] (=) (Farss’)
Y=o o 0 0 R (r-s){r+s) Al ek
2 o
0 0 0 0 0 e At
0 0 0 0 0 0 —P(r—s)
0 0 0 0 0 0 0
I {_,2+52 P& r<r—s;(r+s>} I {_02_52) 22 —<r2—sz)}
. rs3 2 : rs ? ’ rs
. II:  -rs(r—s), '“T_s) %} AP II: {_gs_zs), =3, —rs(r- s)}
| e, f9) | ons o R P, )
o [=PeR (m9)(rs) AP . 422 —(P-2)

(n,k,l)=1(2,4,3),(4,6,3),(3,4,2),n:=8—-n
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The weight module V = L(w1) has the following property

VeV=SPVeaWVie V aA(VeV)aS (Ve V)
= LO0) el(w)e Lw) & LQ2w),

dim : 1 7 14 27
— /o J< s
Spec(R) : — - = -1 -
pec(R) s 3 p
with associated highest weight vectors:
L(0) : Do = V1,7 — Ps V2,6 t+ 5—2 V3,5 — g V4.4 +g V5,3 — g V6,2 + ; V7,1,
P E
L(@y) : Vg = V14— Ps 2.3+ 5—2 V3,2 — ; V4,1,
L(w) : Ve, = V1,2 — Ps 2.1,

L(21D'1) . V2 = V1,1-
The minimal polynomial of Ris
(t— rﬁs_ﬁ) (t+ 1'35_3) (t+1) (t— r_ls) .
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G>-FRT [HW26’]
The unital associative algebra U(R) is generated by 67.;., fﬁ, <i<j<7,and
invertible elements t’;, 5;, 1 < i< 7, with the defining relation

RLELE = L5LER, RLTL; = L;LIR,

[*CL*C =1,
DL* = LF*L£'D,

where L* = (£;) with f;;. ={; =0when1 < j<i<7 matrices LT = [*®]1,
=1® L*, and matrices C and D defined by the Clebsch— Gordan
coefficients from the injections L(0) — V® Vand V= L(w;) — V@ V

[HW26’] Hu, N., Wang, H. (2026) On Two-parameter Quantum Groups: FRT-Formalism and
RLL-Realization of Type G,. (work in progress)
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Application 2: Central Elements

Theorem [HW26] Harish-Chandra theorem for U, (@)

e The HC map & = yPr : Z(U,s(g)) — W is injective.
e Forde PPN Q, 3z; € Z(U), s.t. {(za]=) =tr (a)(— 0 ©), and

= Z Z Z(rs_l)_(p’TﬂI)<w;1’wr+ﬂ>tr(vj'lu:'1 o T) Vflw;w';-ll-,uuy

J
T<ApueQt ij

e Whenrank niseven, £ : Z(U,s(g)) = (U(bJ)W.
When rank n is odd, Im(&) 2 (UE)W® K[z.,z1].

[HW26] Hu, N., Wang, H. (2026) Harish-Chandra Theorem for Two-parameter Quantum
Groups. Forum Math. 38 (1), 193-214.
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The explicit generators and defining relations for Z(U) are subsequently given
in [CHW25], analogous to those for Ug(g) presented in [LXZ16].

Theorem [HW26] The weight lattice type U,,s(g)
(WY = K(Ups) = K(Ug), and

IR

e When nis even, the centre Z( ler, )

Z( Ur,s) = K[Zwl, T, an]-

o 11
When n is odd, the centre Z(U,.5) 2 K[z, -, Zaw,] ® K[2{, z, *], where
€ =2, except € = 4 for Dpy,1.

v

[LXZ16] Li, L., Xia, L., Zhang, Y. (2016) On the center of the quantized enveloping algebra of
a simple Lie algebra. arXiv:1607.00802.

[CHW25] Chen, K., Hu, N., Wang, H. (2025) Harish-Chandra Theorem for the
Multi-Parameter Quantum Groups of Okado-Yamane Type. arXiv:2505.18599
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Application 2: T" operator

Central elements can be constructed by taking the quantum trace of certain
operators I' € U, s(g) ® End(L(1)), analogous to the construction in Ug(g)
[ZGBO91]. It requires the map ® : M — M defined by

m— (rs )™V m  vme My, 1€P.

Theorem [HW26]

Let A € Pt and ¢ : U, s(g) — End(L(2)) be the weight representation. If
there is an operator I' € U, s(g) ® End(L(1)) such that

To(id® O)A(X) = (id® )A(x) o T, V¥ x€ Uys(g),

then the element ¢; = tr2(I'(1 ® ®)) € Z(U, s(9)).

Write 'A(x) = A(x) T" for short. Now we construct such an operator.
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In Up v (g) we have AP (x)R = RA(x). Since R = R*RO, let
¥(-) = RO(-)(R®) ! be an automorphism of Up, ; (g)®2. In fact, this
automorphism can be restricted in U, <(g)®.

Lemma

(1) Let xo € Ua, yp € Ug, @, B € Qand wo = wy = 1, then
¥ (xe ® y5) = R%(xo ® y5) (RO ! = Xawﬁl ® W, Yp-

(2) Y|y, ,(q)=2 is an automorphism of U,.s(g)®°.
(3) For convenience, this restriction is again denoted by Y. Then we have

AP ()R = RYW(A(x)), Vx € Urs(g).

To the target 'A(x) = A(x) I, one needs another operators to cancel the effect

of °P and Y.
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Set operators: K = Zyeow;l ® Pu, Ky = Zpeqwy ® Py, where Py, is the
u-weight space projector.

Theorem

For all weight 2 € P* N Q and all x € U, s(g), we have the following relations

(1) KaA(x) = ¥(A(X) Kz, KLAP(x) = (PA())*PK;

(2) RKQGA(X) = AP (R KL, (RHPIEAP(x) = A(x) (RH)PK,;
(3) TA(x) = A(X)T, where T := (R")PK R K.
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Theorem (Central Elements c;, 4 € P N Q)

Let T = (R")°PK R" K.

The element c; = Trp (I'(1 ® ©)) belongs to the center Z(U, s(g)), and

(W), wy) THEDFEIP,)
(rs- 1) (- P @ p (b)

= F D0 wpte®),

(m;y,a,b)el
where P = (F{ &Y and the index set
I ={(my.ab|lyeQ;nn-—yeWt(LQ); abe I, |a=|bl=vy}.

In fact, the element c; = z,, which (z; | =) = tr (1) (= 0 ©).

While the proof for the Harish-Chandra theorem mw2e) relies solely on the
existence and formal notation of the dual basis, we now supplement it by
giving explicit expressions for all &,, ¥, and P,.
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This method could be naturally extended to the two-parameter quantum group
Ur.s(g) of weight lattice type, whose Cartan part is generated by

+1 7+l
{wwi’ w wi};—;l'

Corollary
For each A € P*, we define

7%,1=Zw;1®P, ‘]V(/’I=Za);l®Pﬂ
peP ueP

on Ur,s ® End(L(Q)). Then one could get

I = (R PR, R Ky, and c; = Tra (f(l ® @)) e 2(U,.+(a)).
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Application 3: two-paramater classical r-matrices

The classical r-matrix for any simple Lie algebra g can be extracted from the
universal R-matrix.
In sl case we have:

’

h—H

R =exp,e1 ((s—1) e®f)exp( He® H’)

Take the classical limit by letting 7 — 0 when h = ;i and # = ex7i:

€162
€1 — €2

6(x) = [A(X), rall
S(Hy=6(H)=0, 6(e) = —ere A H, 6(H = exfA H

ra=(e—-e€)e®f+ Ho H

Particularly, when (€1, €2) = (1, —1), it recovers

1
2e®f+§H®H’
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Further Directions

e Two-parameter quantum group of type Go: FRT-Chevalley and
RLL-Drinfeld isomorphism, and applications to G»-spider invariants

o Applications to RT/TV invariants

o In root of unity settings (exotic smallmx261), non-semisimple

[HX26] Hu, N., Xu, X. (2026) Novel isoclasses of one-parameter exotic small quantum groups

originating from a two-parameter framework. Bull. Sci. Math. 206, 103738.
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Thank you for your attention!
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