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At the categorical level, or the macro level, one usually 
decomposes objects into sums of simpler objects. Typical 
examples appear in the theories of representation rings, 
Brauer groups, branching laws, etc.

In many problems, one needs to consider explicit elements in 
a given object. For example, additive and multiplicative 
decompositions of polynomials are ubiquitous. This talk is 
about decompositions of tensor elements at the micro level.
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Tensor Element Decompositions
Main Problem: Given an element in a tensor space, or a 
tensor algebra, what is the simplest presentation?

Definition: Let  be finite-dimensional vector 
spaces over some field . A 3-tensor  is 
said to be of rank one, if  for some 

. The rank, denoted , of a 
tensor  is the smallest number  such 
that  may be expressed as a sum of  rank one tensors.

U, V, W
𝕂 T ∈ U ⊗ V ⊗ W

T = u ⊗ v ⊗ w
u ∈ U, v ∈ V, w ∈ W R(T)

T ∈ U ⊗ V ⊗ W r
T r
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Notations of Tensor Elements

Tensors may appear in various different guises.

3-Tensors:  with prescribed bases∑
i,j,k

aijk ei ⊗ fj ⊗ gk

⟺ (aijk)l×m×n ⟺ f(x, y, z) = ∑
i,j,k

aijkxiyjzk

⟺ Φ : U ⊗ V ⊗ W → 𝕂, ei ⊗ fj ⊗ gk ↦ aijk
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Notations of Tensor Elements
Call the tensor  

symmetric, if the constants  are invariant under 
permuting the indices.

n

∑
i1,i2,…,id

ai1i2…id ei1 ⊗ ei2 ⊗ ⋯ ⊗ eid ∈ V⊗d

ai1i2…id

Symmetric tensors are synonymous with homogeneous 
polynomials, forms, symmetric multilinear forms, 
projective hypersurfaces, etc.
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 for some   
       

where  for all 

T =
n

∑
i1,i2,…,id

ai1i2…id ei1 ⊗ ei2 ⊗ ⋯ ⊗ eid

⟺ T = v⊗d
1 + v⊗d

2 + ⋯ + v⊗d
r vi ∈ V

⟺ f(x1, x2, …, xn) =
n

∑
i1,i2,…,id

ai1i2…idxi1xi2⋯xid =
r

∑
k=1

ld
i

li =
n

∑
j=1

pijxj ⟺ vi =
n

∑
j=1

pijej 1 ≤ i ≤ r .



Notations of Tensor Elements
For symmetric 

 for some   
       

where  for all 

T =
n

∑
i1,i2,…,id

ai1i2…id ei1 ⊗ ei2 ⊗ ⋯ ⊗ eid

⟺ T = v⊗d
1 + v⊗d

2 + ⋯ + v⊗d
r vi ∈ V

⟺ f(x1, x2, …, xn) =
n

∑
i1,i2,…,id

ai1i2…idxi1xi2⋯xid =
r

∑
k=1

ld
i

li =
n

∑
j=1

pijxj ⟺ vi =
n

∑
j=1

pijej 1 ≤ i ≤ r .

The previous expression of f is called a Waring decomposition.
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Tensor Element Decompositions
Remark 1: It is extremely hard, in fact NP-hard, to determine 
the rank of a general high-order tensor.

Remark 2: For symmetric tensors, one can consider the 
problem of symmetric tensor rank. This is another version of 
the Waring problem of polynomials.

Remark 3: A rank one tensor is essentially a monomial in the 
more familiar terminology of algebra. It is nontrivial to 
determine if a polynomial is equivalent to a monomial. 
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Motivating Example 1:  
Sums of Squares 

A beautiful sums of squares identity:
(x2

1 + x2
2)(y2

1 + y2
2) = (x1y1 + x2y2)2 + (x1y2 − x2y1)2 .

For what values of n can there be identities like 

with ?
(x2

1 + ⋯ + x2
n)(y2

1 + ⋯ + y2
n) = z2

1 + ⋯ + z2
n

zj ∈ 𝕂[x1, …, xn, y1, …, yn]
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Sums of Squares

Hurwitz’s “1, 2, 4, 8 Theorem” (1898):                        
n-square identities exist only for n=1, 2, 4, 8.

Hurwitz’s Problem (1898):                              
Given r and s, find minimal n such that there holds 

(x2
1 + ⋯ + x2

r )(y2
1 + ⋯ + y2

s ) = z2
1 + ⋯ + z2

n .
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n ⟹ n ≥ r * s

r * s
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Hopf condition and Hopf’s theorem:  
                          

where  is the Hopf-Stiefel function defined as
(x2

1 + ⋯ + x2
r )(y2

1 + ⋯ + y2
s ) = z2

1 + ⋯ + z2
n ⟹ n ≥ r * s

r * s
r * s := min{m ∈ ℕ | (x + y)m = 0 ∈ 𝔽2[x, y]/(xr, ys)} .

The square identity induces a map of projective space 
 thus a map of the cohomology rings

Here,  is the cohomology ring of Then 
Hopf used the Hopf structures on the cohomology rings 
to deduce his condition. This is one of the historical 
origins of Hopf algebras!

ℙr−1 × ℙs−1 → ℙn−1,
𝔽2[T]/(Tn) → 𝔽2[R]/(Rr) ⊗ 𝔽2[S]/(Ss), T ↦ R ⊗ 1 + 1 ⊗ S .

𝔽2[T]/(Tn) ℙn−1 .
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Motivating Example 1:  
Sums of Squares

On the other hand, the law of moduli of finite-dimensional real 
division algebras give rise to the 1, 2, 4, 8-square identities. 

We noticed that the octonions are essentially a commutative 
associative algebra in suitable braided tensor categories. Then we 
could vastly generalize octonion algebras and applied them to 
generate square identities via partial law of moduli.

Furthermore, it is natural to ask the composition law of general 
quadratic forms, or even higher degree forms, for example 

(xd
1 + ⋯ + xd

r )(yd
1 + ⋯ + yd

s ) = zd
1 + ⋯ + zd

n .
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Motivating Example 2:  
Matrix Multiplication 

Consider the multiplication of 2 by 2 matrices. As a 
bilinear map, it can be described as a 3-tensor: 

M = ∑
1≤i,j,k≤2

ϵij ⊗ ϵjk ⊗ eik .

Strassen found that ! This implies that, it takes 
seven or even less scalar multiplications to compute the 
product of two 2 by 2 matrices. Therefore, it takes  
scalar multiplications for that of n by n matrices.

R(M) ≤ 7

nlog2 7



Motivating Example 2:  
Matrix Multiplication 

The Strassen algorithm can be described as:  
M = (ϵ11 + ϵ22) ⊗ (ϵ11 + ϵ22) ⊗ (e11 + e22)

+(ϵ21 + ϵ22) ⊗ ϵ11 ⊗ (e21 − e22)
+ϵ11 ⊗ (ϵ12 − ϵ22) ⊗ (e12 + e22)
+ϵ22 ⊗ (ϵ21 − ϵ11) ⊗ (e11 + e21)
+(ϵ11 + ϵ12) ⊗ ϵ22 ⊗ (e12 − e11)
+(ϵ21 − ϵ11) ⊗ (ϵ11 + ϵ12) ⊗ e22

+(ϵ12 − ϵ22) ⊗ (ϵ21 + ϵ22) ⊗ e11 .
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What Do We Do?
Problem 1: How to decompose a tensor as a direct sum, or 
equivalently, a partial decomposition?

Problem 2: How to decompose a tensor as a direct 
product, i.e., a multiplicative decomposition?

Problem 3: Determine if a tensor is of rank one, or if a 
homogeneous polynomial is a product of linear forms.
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Direct Sum

A tensor  is called a direct sum, if there 
are  such that  in 
the tensor space .

T ∈ U ⊗ V ⊗ W
Ti ∈ Ui ⊗ Vi ⊗ Wi (i = 1,2) T = T1 + T2

(U1 ⊕ U2) ⊗ (V1 ⊕ V2) ⊗ (W1 ⊕ W2) = U ⊗ V ⊗ W

In terms of polynomials, this is equivalent to writing
 where , 

etc. In other words, separate variables of polynomials.
f(X, Y, Z) = g(X1, Y1, Z1) + h(X2, Y2, Z2) X = X1 ⊔ X2
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Strassen’s Additivity Conjecture 
Multiplication of blocked matrices led Strassen to propose his 
additivity conjecture:  
Given , let  in the tensor 
space .  
Then .

Ti ∈ Ui ⊗ Vi ⊗ Wi (i = 1,2) T = T1 ⊕ T2
(U1 ⊕ U2) ⊗ (V1 ⊕ V2) ⊗ (W1 ⊕ W2)

R(T) = R(T1) + R(T2)

The conjecture is disproved by Shitov (Acta Math. 2019). It 
seems that the conjecture fails only in very strange situations. 
It is of interest to consider the conditions for “=“ holds.



Direct Product

Definition: A multivariate function  is 
called a direct product if, after a linear change of 
variables, it can be written as a product of two or more 
functions in disjoint sets of variables 

Call  completely factorable, if it is a 
product of  univariate functions.

f(x1, x2, …, xn)

f(x) x=Py= g1(y1, …, ya) ⋅ g2(ya+1, …, yn), 0 < a < n .
f(x1, x2, …, xn)

n



Direct Sum vs Direct Product

Lemma. (1)  is a direct sum if and only if 
 is a direct product. (2)  is a direct 

product if and only if  is a direct sum.

f(x1, x2, …, xn)
exp f g(x1, x2, …, xn)

log g



Center and Decompositions

Definition: The center of an -variate function 
 is defined as 

where  is the hessian matrix of the 

function 

n
f(x1, x2, …, xn)

Z( f ) := {X ∈ 𝕂n×n | (HX)T = HX},

H = ( ∂2f
∂xi∂xj )

1≤i,j≤n
f(x1, x2, …, xn) .



Center and Decompositions

Proposition: (1) The center of a multivariate function is a 
special Jordan algebra. (2) Direct sum decompositions of  
are in bijection with complete sets of orthogonal 
idempotent of . (3) Direct product decompositions of 
 are in bijection with complete sets of orthogonal 

idempotents of 

f

Z( f )
f

Z(log f ) .
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Toy Example 1
If , then its center .f = x3 + y3 Z( f ) ≅ 𝕂2

General binary cubics: a0x3 + 3a1x2y + 3a2xy2 + a3y3

By dimension counting: 
a0x3 + 3a1x2y + 3a2xy2 + a3y3 = (α1x + β1y)3 + (α2x + β2y)3

Cardano formula revisited: 
a0x3 + 3a1x2 + 3a2x + a3 = (α1x + β1)3 + (α2x + β2)3
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Consider the following ternary cubic 
f(x1, x2, x3) = x3

1 + x3
2 + x3

3 − 3x1x2x3 .



Toy Example 2

Consider the following ternary cubic 
f(x1, x2, x3) = x3

1 + x3
2 + x3

3 − 3x1x2x3 .

The center of the function  is log f

Z(log f ) = ℂ (
1 0 0
0 1 0
0 0 1) + ℂ (

0 1 0
0 0 1
1 0 0) + ℂ (

0 0 1
1 0 0
0 1 0) .
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in  which correspond to a complete factorization 
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Toy Example 2
It is easy to find three mutually orthogonal idempotents 
in  which correspond to a complete factorization 
of the polynomial .

Z(log f )
f(x1, x2, x3)

The polynomial  is factorized as  
 

where  is a primitive cubic root of unity.

f
f(x1, x2, x3) = (x1 + x2 + x3)(x1 + ωx2 + ω2x3)(x1 + ω2x2 + ωx3)

ω =
−1 + 3i

2
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The Chow Variety

Definition: The Chow variety of product of linear forms is 
the orbit closure GLn[x1x2⋯xn] .

Problem: determine whether a higher degree form is a 
product of linear forms.
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Theorem: Suppose  Then  
 with linearly independent ’s if and only if 

f ∈ 𝕂[x1, x2, …, xn]d . f = ld1
1 ld2

2 ⋯ldn
n

(di ≥ 1, ∀i) li
Z(log f ) ≅ 𝕂n .



The Chow Variety

Theorem: Suppose  Then  
 with linearly independent ’s if and only if 

f ∈ 𝕂[x1, x2, …, xn]d . f = ld1
1 ld2

2 ⋯ldn
n

(di ≥ 1, ∀i) li
Z(log f ) ≅ 𝕂n .

Remark: Our algorithm of direct product gives a simple 
criterion and an efficient algorithm to completely 
factorize a multivariate polynomial.
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Toy Example 3

Consider the quartic How do we 
recognize the terms of powers of linear forms?

x4 + y4 + (x + y)4 .

By calculation, it is easy to observe that  
annihilates the previous quartic. Moreover, each linear 
factor of the annihilating differential polynomial 
corresponds to a term of the Waring decomposition! 

∂x∂y(∂x − ∂y)
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Hopf Pairing vs The Apolarity Method
Denote  and . Then  
acts naturally as differentiation on .

ℛ = 𝕂[x1, x2, …, xn] 𝒟 = 𝕂[∂1, ∂2, …, ∂n] 𝒟
ℛ

 and  are Hopf algebras, and they are mutually graded 
dual of each other. The previous action comes from Hopf 
algebraic structures and it provides a nice Hopf pairing. 

ℛ 𝒟

Rota highly advocated the Hopf algebraic approach to the 
apolarity method and even the whole classical algebraic 
invariant theory!
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Hopf Pairing vs The Apolarity Method
For , let . Then  is a 
Gorenstein ideal and  is a Gorenstein algebra. A well 
known result of Macaulay says that: there is a bijection 
between forms and graded Atinian Gorenstein algebras.

f ∈ ℛd f⊥ = {𝔤 ∈ 𝒟 ∣ 𝔤 ∘ f = 0} f⊥

𝒟/f⊥

If , then  is a coideal. 
Determining  amounts to solving a constant coefficient 
PDE! For example, consider the Laplacian , 
then  consists of the well-known harmonic polynomials.

𝔤 ∈ 𝒟d 𝔤⊥ = {f ∈ ℛ ∣ 𝔤 ∘ f = 0} ⊂ ℛ
𝔤⊥

Δ = ∂2
x1

+ … + ∂2
xn

Δ⊥
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f =
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⋂
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Hopf Pairing vs The Apolarity Method

The Apolarity Lemma: Suppose . Thenf ∈ ℂ[x1, …, xn]

f =
r

∑
i=1

λi(αi1x1 + … + αinxn)d ⟺
r

⋂
i=1

I[αi1 : ⋯ : αin] ⊂ f⊥ .

For binary forms, we provide an elementary treatment. 
For forms with more variables, it seems Hopf pairings 
might be a promising approach.
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A Brief Summary
The problem of Tensor decompositions arises naturally 
form arithmetic, algebra, geometry, multilinear algebra, 
data processing, and various other practical areas.

There remain many challenging problems. Methods from 
Hopf algebras and tensor categories, representation 
theory, invariant theory, algebraic geometry, and even 
machine learning, artificial intelligence, etc. play 
significant roles for further studying.
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Questions or Comments？


