On Tensor Pecompositions

Hua-Lin Huang
Huagiao University

G PSR EEL S (L

[P =

International Conference on
Hopf Algebras and Tensor Categories

On Tensor Pecompositions

Hua-lin Huang
Huagiao University

What is the talk about?

What is the talk about?

* At the cateqorical level, or the macro level, one usvally
decomposes objects into sums of simpler objects. Typical
examples appear in the theories of representation rings,
Braver groups, branching laws, etec.

What is the talk about?

* At the cateqorical level, or the macro level, one usvally
decomposes objects into sums of simpler objects. Typical
examples appear in the theories of representation rings,
Braver groups, branching laws, etec.

* |n many problems, one needs to consider explicit elements in
a given object. For example, additive and wmultiplicative
decompositions of polynowials are ubiquitous. This falk is
about decompositions of tensor elements at the wmicro level.

Tensor Element Decompositions

Tensor Element Decompositions

* : Given an element in a tensor space, or a
tensor algebra, what is the simplest presentation?

Tensor Element Decompositions

* : Given an element in a tensor space, or a
tensor algebra, what is the simplest presentation?

* Pefinition: Let U, V., W be finite-dimensional vector
spaces over some field K. A 3-tensor Te UQ VQ® Wis
said to be of rank one, if 7 = u ® v ® w for some
ue U,veV,we W.Therank, denoted R(7), of a
tensor 7T € U ® V@ Wis the smallest number r such
that 7 may be expressed as a sum of » rank one tensors.

Notations of Tensor Elements

Notations of Tensor Elements

* Tensors may appear in various different guises.

Notations of Tensor Elements

* Tensors may appear in various different guises.

« 3Tensors:) a, e ®f ® g, with preseribed bases
L1,k
i (aijk)leXn = f(X, i g Z Lijiridj<k

158
— O:URX~VRW- K, €i®]§'®gk'_>aijk

Notations of Tensor Elements

Notations of Tensor Elements

* Call thetensor) a,, ¢, ®e, ® Qe € V&

i1i2°°°ld L1
Lialysh sl

symwetric, if the constants o, . areinvariant under
permuting the indices.

Notations of Tensor Elements

* Callthetensor) 4, . ¢ ®e ® Qe €V

i1i2°°°ld L1
Lialysh sl

symmetric, if the constants ¢, ; areinvariant under
permuting the indices.

* Symwetric fensors are synonymous with homogeneous
polynowials, forms, symwmetric multilinear forws,
projective hypersurfaces, etc.

Notations of Tensor Elements

Notations of Tensor Elements

* For symmetric 7=) a, , ¢ ®ec®®¢

lislos-tosly

= T—v®d+v®d+ +v®dforsomev i

= o d
e e) = Z di: e Zl

Lol

whereli= Zpij — V;= Zpl]e forall1 <i<r.

Notations of Tensor Elements

* For symmetric 7=) a, , ¢ ®ec®®¢

lislos-tosly

= T—v®d+v®d+ +v®dforsomev i

= o d
e e) = Z di: e Zl

Lol

wherell: Zpij — V;, = Zpl]e forall1 <i<r.

* The previous expression of f is called a Waring decomposition.

Tensor Element Decompositions

Tensor Element Decompositions

* Remark 1: It is extrewmely hard, in fact NP-hard, to determine
the rank of a general high-order tensor.

Tensor Element Decompositions

* Remark 1: It is extrewmely hard, in fact NP-hard, to determine
the rank of a general high-order tensor.

* Rewmark 2: For symwmetric tensors, one can consider the
problem of symwetric tensor rank. This is another version of
the Waring problem of polynowials.

Tensor Element Decompositions

* Remark 1: It is extrewmely hard, in fact NP-hard, to determine
the rank of a general high-order tensor.

* Rewmark 2: For symwmetric tensors, one can consider the
problem of symwetric tensor rank. This is another version of
the Waring problem of polynowials.

* Rewark 2: A rank one tensor is essentially a monowial in the
more familiar terminology of algebra. It is nontrivial to
determine if a polynowial is equivalent to a monowial.

Motivating Example 1.
Suwms of Squares

Motivating Example 1.
Suwms of Squares

* A beavtiful sums of squares identity:
(Xlz 1 Xzz)(y12 + yzz) = (X + x2y2)2 + (X)) — X2Y1)2-

Motivating Example 1.
Suwms of Squares

* A beavtiful sums of squares identity:
(Xlz 1 xzz)(y12 + yzz) = (X + x2y2)2 + (X)) — X2Y1)2-

* For what values of n can there be identities like
(24 oo D+ e b yD) = 2k e+ 22
with i SR eERe Ay vt

Motivating Example 1:
Sums of Squares

Motivating Example 1.
Suwms of Squares

* Rurwitz’s “1, 2, 4, & Theorem” (1898):

Motivating Example 1.
Suwms of Squares

* Rurwitz’s “1, 2, 4, & Theorem” (1898):

* Hurwitz’s Problem (1898):
Givenr and s, find minimal n such that there holds

Motivating Example 1:

Sums of Squares

-

_xa =
Y4

Motivating Example 1.
Sums of Squares

* Hopf condition and Hopf’s theorem:

where r * s is the Hopf-Stiefel funetion defined as a i
. p 4

i

“

‘
’

Motivating Example 1.
Suwms of Squares

* Hopf condition and Ropf’s theorem:

where r * s is the Hopf-Stiefel function defined as

* The square identity induces a map of projective space
P! x P~ = P!, thus a map of the cohomology rings

-
P

R

Rere, F,[71/(T") is the cohomology ring of P! . Then
Ropf used the Ropf structures on the cohomology rings
fo deduce his condition.

Motivating Example 1.
Suwms of Squares

Motivating Example 1.
Suwms of Squares

* On the other hand, the law of moduli of finite-dimensional real
division algebras give rise to the 1, 2, 4 8-square identities.

Motivating Example 1.
Suwms of Squares

* On the other hand, the law of moduli of finite-dimensional real
division algebras give rise to the 1, 2, 4 8-square identities.

x We noticed that the octonions are essentially a commutative
associative algebra in suitable braided tensor cateqories. Then we
could vastly generalize octonion algebras and applied thewm fo
generate square identities via partial law of moduli.

Motivating Example 1.
Suwms of Squares

* On the other hand, the law of moduli of finite-dimensional real
division algebras give rise to the 1, 2, 4 8-square identities.

%* We noticed that the octonions are essentially a commutative
associative algebra in suitable braided tensor cateqories. Then we
could vastly generalize octonion algebras and applied thewm fo
generate square identities via partial law of moduli.

* Furtherwore, it is natural to ask the composition law of general
quadratic forms, or even higher degree forwms, for example
x4 e+ XD+ e+ y) =70+ + 2

Motivating Example 2:
Matrix Multiplication

Motivating Example 2:
Matrix Multiplication

* Consider the multiplication of 2 by 2 matrices. As a
bilinear map, it can be described as a 3-fensor:

1<i,j,k<2

Motivating Example 2:
Matrix Multiplication

* Consider the multiplication of 2 by 2 matrices. As a
bilinear map, it can be described as a 3-fensor:
M: Z €lj®€jk®€ik.

1<i,j k<2

* Strassen found that R(1/) < 7! This implies that, it takes
seven or even less scalar multiplications fo compute the
product of two 2 by 2 matrices. Therefore, it takes 0%’
scalar multiplications for that of n by n matrices.

Motivating Example 2:
Matrix Multiplication

* The Strassen algorithm can be described as:
M = (€11 + €3) Q (€11 + €3) Q (€] + €3;)

+(€y) + €) R €11 Q (€3 — €7)
+e1; @ (€15 — €3) Q (€15 + €x))

+(€10 — €) R (€51 + €7) B € .

Article

Discovering faster matrix multiplication
algorithms with reinforcementlearning

https://doi.org/10.1038/s41586-022-05172-4
Received: 2 October 2021

Accepted: 2 August 2022

Published online: 5 October 2022

& Pushmeet Kohli'

Alhussein Fawzi'?*, Matej Balog'?, Aja Huang'?, Thomas Hubert'?,
Bernardino Romera-Paredes'?, Mohammadamin Barekatain', Alexander Novikov',
Francisco J. R. Ruiz', Julian Schrittwieser', Grzegorz Swirszcz', David Silver', Demis Hassabis

1

Open access

m Check for updates

Improving the efficiency of algorithms for fundamental computations can have a
widespreadimpact, asit can affect the overall speed of a large amount of computations.

Matrix multiplicationis one such primitive task, occurring in many systems—from
neural networks toscientific computing routines. The automatic discovery of
algorithms using machine learning offers the prospect of reaching beyond human
intuitionand outperforming the current best human-designed algorithms. However,
automating the algorithm discovery procedure is intricate, as the space of possible
algorithmsis enormous. Here we report adeep reinforcementlearning approach
based onAlphaZero' for discovering efficientand provably correct algorithms for the
multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained toplay a
single-player game where the objectiveis finding tensor decompositions withina
finite factor space. AlphaTensor discovered algorithms thatoutperformthe state-
of-the-art complexity for many matrixsizes. Particularly relevant is the case of 4 x 4
matricesin afinite field, where AlphaTensor’s algorithm improves on Strassen’s two-
level algorithm for the first time, to ourknowledge, since its discovery 50 yearsago’.

We further showcase the flexibility of AlphaTensor through different use-cases:
algorithms with state-of-the-art complexity for structured matrix multiplication and
improved practical efficiency by optimizing matrix multiplication for runtime on
specific hardware. Ourresults highlight AlphaTensor’s ability to accelerate the
process of algorithmic discovery on arange of problems, and tooptimize for different

criteria.

We focus on the fundamental task of matrix multiplication, and use
deep reinforcement learning (DRL) tosearch for provably correctand
efficient matrix multiplication algorithms. This algorithm discovery
processis particularlyamenable toautomation because arich space of
matrix multiplication algorithms can beformalized aslow-rank decom-
positions of aspecificthree-dimensional (3D) tensor?, called the matrix
multiplication tensor®”. This space of algorithms contains the stand-
ard matrix multiplicationalgorithm andrecursive algorithms such as
Strassen’s?, as well as the (unknown) asymptotically optimal algorithm.
Although animportant body of work aims at characterizing the com-
plexity of the asymptotically optimal algorithm*®™2, this does not yield
practical algorithms®. We focus here on practical matrix multiplication
algorithms, which correspond to explicit low-rank decompositions of
the matrix multiplication tensor. In contrast to two-dimensional matri-
ces, for which efficient polynomial-time algorithms computing the rank
have existed for over two centuries®, finding low-rank decompositions
of 3D tensors (and beyond) is NP-hard™ and is also hard in practice.
In fact, the search space is so large that even the optimal algorithm
for multiplying two 3 x 3 matricesis stillunknown. Nevertheless, ina
longstanding research effort, matrix multiplication algorithms have

beendiscoveredbyattacking this tensor decomposition problemusing
human search*®", continuous optimization” ™ and combinatorial
search®. These approaches oftenrely on human-designed heuristics,
which are probably suboptimal. Weinstead use DRLtolearn to recog-
nize and generalize over patterns intensors,and use the learned agent
to predict efficient decompositions.

We formulate the matrix multiplication algorithm discovery pro-
cedure (thatis, the tensor decomposition problem) as asingle-player
game, called TensorGame. At each step of TensorGame, the player
selects how to combine different entries of the matrices to multiply.
Ascoreisassigned based on the number of selected operationsrequired
to reach the correct multiplication result. This is a challenging game
withanenormousactionspace (more than10* actions for most inter-
esting cases) thatis much larger than that of traditional board games
such aschessand Go (hundreds of actions).To solve TensorGame and
find efficient matrix multiplication algorithms, we develop aDRL agent,
AlphaTensor.AlphaTensorisbuilt onAlphaZero**,where aneural net-
work is trained to guide a planning procedure searching for efficient
matrix multiplication algorithms. Our framework uses a single agent
to decompose matrix multiplication tensors of various sizes, yielding

'DeepMind, London, UK. *These authors contributed equally: Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert and Bernardino Romera-Paredes. ®e-mail: afawzi@deepmind.com

Nature | Vol 610 | 6 October 2022 | 47

Article

Discovering faster matrix multiplication
algorithms with reinforcementlearning

https://doi.org/10.1038/s41586-022-05172-4
Received: 2 October 2021

Accepted: 2 August 2022

Published online: 5 October 2022

& Pushmeet Kohli'

Alhussein Fawzi'?*, Matej Balog'?, Aja Huang'?, Thomas Hubert'?,
Bernardino Romera-Paredes'?, Mohammadamin Barekatain', Alexander Novikov',
Francisco J. R. Ruiz', Julian Schrittwieser', Grzegorz Swirszcz', David Silver', Demis Hassabis

1

Open access

m Check for updates

Improving the efficiency of algorithms for fundamental computations can have a
widespreadimpact, asit can affect the overall speed of a large amount of computations.

Matrix multiplicationis one such primitive task, occurring in many systems—from
neural networks toscientific computing routines. The automatic discovery of
algorithms using machine learning offers the prospect of reaching beyond human
intuitionand outperforming the current best human-designed algorithms. However,
automating the algorithm discovery procedure is intricate, as the space of possible
algorithmsis enormous. Here we report adeep reinforcementlearning approach
based onAlphaZero' for discovering efficientand provably correct algorithms for the
multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained toplay a
single-player game where the objectiveis finding tensor decompositions withina
finite factor space. AlphaTensor discovered algorithms thatoutperformthe state-
of-the-art complexity for many matrixsizes. Particularly relevant is the case of 4 x 4
matricesin afinite field, where AlphaTensor’s algorithm improves on Strassen’s two-
level algorithm for the first time, to ourknowledge, since its discovery 50 yearsago’.

We further showcase the flexibility of AlphaTensor through different use-cases:
algorithms with state-of-the-art complexity for structured matrix multiplication and
improved practical efficiency by optimizing matrix multiplication for runtime on
specific hardware. Ourresults highlight AlphaTensor’s ability to accelerate the
process of algorithmic discovery on arange of problems, and tooptimize for different

criteria.

We focus on the fundamental task of matrix multiplication, and use
deep reinforcement learning (DRL) tosearch for provably correctand
efficient matrix multiplication algorithms. This algorithm discovery
processis particularlyamenable toautomation because arich space of
matrix multiplication algorithms can beformalized aslow-rank decom-
positions of aspecificthree-dimensional (3D) tensor?, called the matrix
multiplication tensor®”. This space of algorithms contains the stand-
ard matrix multiplicationalgorithm andrecursive algorithms such as
Strassen’s?, as well as the (unknown) asymptotically optimal algorithm.
Although animportant body of work aims at characterizing the com-
plexity of the asymptotically optimal algorithm*®™2, this does not yield
practical algorithms®. We focus here on practical matrix multiplication
algorithms, which correspond to explicit low-rank decompositions of
the matrix multiplication tensor. In contrast to two-dimensional matri-
ces, for which efficient polynomial-time algorithms computing the rank
have existed for over two centuries®, finding low-rank decompositions
of 3D tensors (and beyond) is NP-hard™ and is also hard in practice.
In fact, the search space is so large that even the optimal algorithm
for multiplying two 3 x 3 matricesis stillunknown. Nevertheless, ina
longstanding research effort, matrix multiplication algorithms have

beendiscoveredbyattacking this tensor decomposition problemusing
human search*®", continuous optimization” ™ and combinatorial
search®. These approaches oftenrely on human-designed heuristics,
which are probably suboptimal. Weinstead use DRLtolearn to recog-
nize and generalize over patterns intensors,and use the learned agent
to predict efficient decompositions.

We formulate the matrix multiplication algorithm discovery pro-
cedure (thatis, the tensor decomposition problem) as asingle-player
game, called TensorGame. At each step of TensorGame, the player
selects how to combine different entries of the matrices to multiply.
Ascoreisassigned based on the number of selected operationsrequired
to reach the correct multiplication result. This is a challenging game
withanenormousactionspace (more than10* actions for most inter-
esting cases) thatis much larger than that of traditional board games
such aschessand Go (hundreds of actions).To solve TensorGame and
find efficient matrix multiplication algorithms, we develop aDRL agent,
AlphaTensor.AlphaTensorisbuilt onAlphaZero**,where aneural net-
work is trained to guide a planning procedure searching for efficient
matrix multiplication algorithms. Our framework uses a single agent
to decompose matrix multiplication tensors of various sizes, yielding

'DeepMind, London, UK. *These authors contributed equally: Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert and Bernardino Romera-Paredes. ®e-mail: afawzi@deepmind.com

Nature | Vol 610 | 6 October 2022 | 47

Article

Discovering faster matrix multiplication
algorithms with reinforcementlearning

https://doi.org/10.1038/s41586-022-05172-4 Alhussein Fawzi"?*, Matej Balog'?, Aja Huang'?, Thomas Hubert'?,

Received: 2 October 2021

Accepted: 2 August 2022 & Pushmeet Kohli'
Published online: 5 October 2022

Bernardino Romera-Paredes'?, Mohammadamin Barekatain', Alexander Novikov',
Francisco J. R. Ruiz', Julian Schrittwieser', Grzegorz Swirszcz', David Silver', Demis Hassabis'

Open access Improvingthe efficiency of algorithms for fundamental computations can have a

/M) Check for updates widespreadimpact, asit can affect the overall speed of a large amount of computations.
Matrix multiplicationis one such primitive task, occurring in many systems—from
neural networks toscientific computing routines. The automatic discovery of
algorithms using machine learning offers the prospect of reaching beyond human
intuitionand outperforming the current best human-designed algorithms. However,
automating the algorithm discovery procedure is intricate, as the space of possible
algorithmsis enormous. Here we report adeep reinforcementlearning approach
based onAlphaZero' for discovering efficientand provably correct algorithms for the
multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained toplay a
single-player game where the objectiveis finding tensor decompositions withina
finite factor space. AlphaTensor discovered algorithms thatoutperform the state-
of-the-art complexity for many matrixsizes. Particularly relevant is the case of 4 x 4
matricesin afinite field, where AlphaTensor’s algorithm improves on Strassen’s two-
level algorithm for the first time, to ourknowledge, since its discovery 50 yearsago’.
We further showcase the flexibility of AlphaTensor through different use-cases:
algorithms with state-of-the-art complexity for structured matrix multiplication and
improved practical efficiency by optimizing matrix multiplication for runtime on
specific hardware. Ourresults highlight AlphaTensor’s ability to accelerate the
process of algorithmic discovery on arange of problems, and tooptimize for different

criteria.

We focus on the fundamental task of matrix multiplication, and use
deep reinforcement learning (DRL) tosearch for provably correctand
efficient matrix multiplication algorithms. This algorithm discovery
processis particularlyamenable toautomation because arich space of
matrix multiplication algorithms can beformalized aslow-rank decom-
positions of aspecificthree-dimensional (3D) tensor?, called the matrix
multiplication tensor’~. This space of algorithms contains the stand-
ard matrix multiplicationalgorithm andrecursive algorithms such as
Strassen’s?, as well as the (unknown) asymptotically optimal algorithm.
Although animportant body of work aims at characterizing the com-
plexity of the asymptotically optimal algorithm*®™2, this does not yield
practical algorithms®. We focus here on practical matrix multiplication
algorithms, which correspond to explicit low-rank decompositions of
the matrix multiplication tensor. In contrastto two-dimensional matri-
ces, for which efficient polynomial-time algorithms computing the rank
have existed for over two centuries®, finding low-rank decompositions
of 3D tensors (and beyond) is NP-hard™ and is also hard in practice.
In fact, the search space is so large that even the optimal algorithm
for multiplying two 3 x 3 matricesis stillunknown. Nevertheless, ina
longstanding research effort, matrix multiplication algorithms have

beendiscoveredbyattacking this tensor decomposition problemusing
human search*®", continuous optimization” ™ and combinatorial
search®. These approaches oftenrely on human-designed heuristics,
which are probably suboptimal. Weinstead use DRLtolearn to recog-
nize and generalize over patterns intensors,and use the learned agent
to predict efficient decompositions.

We formulate the matrix multiplication algorithm discovery pro-
cedure (thatis, the tensor decomposition problem) as asingle-player
game, called TensorGame. At each step of TensorGame, the player
selects how to combine different entries of the matrices to multiply.
Ascoreisassigned based on the number of selected operationsrequired
to reach the correct multiplication result. This is a challenging game
withanenormousactionspace (more than10* actions for most inter-
estingcases) thatis much larger than that of traditional board games
such aschessand Go (hundreds of actions).To solve TensorGame and
find efficient matrix multiplication algorithms, we develop aDRL agent,
AlphaTensor.AlphaTensorisbuilt onAlphaZero**,where aneural net-
work is trained to guide a planning procedure searching for efficient
matrix multiplication algorithms. Our framework uses a single agent
to decompose matrix multiplication tensors of various sizes, yielding

'DeepMind, London, UK. *These authors contributed equally: Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert and Bernardino Romera-Paredes. ®e-mail: afawzi@deepmind.com

Nature | Vol 610 | 6 October 2022 | 47

Google DeepMind 2025-5-16

AlphaEvolve: A coding agent for scientific and
algorithmic discovery

Alexander Novikov*, Ngan Vﬁ*, Marvin Eisenberger*, Emilien Dupont*, Po-Sen Huang*, Adam Zsolt Wagner*,
Sergey Shirobokov', Borislav Kozlovskii , Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail

See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli and Matej Balog*
Google DeepMind'

In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances
capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems
or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous
pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using
an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve
iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We
demonstrate the broad applicability of this approach by applying it to a number of important com-
putational problems. When applied to optimizing critical components of large-scale computational
stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found
a functionally equivalent simplification in the circuit design of hardware accelerators, and acceler-
ated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered
novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems
in mathematics and computer science, significantly expanding the scope of prior automated discovery
methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a
procedure to multiply two 4 x 4 complex-valued matrices using 48 scalar multiplications; offering the
first improvement, after 56 years, over Strassen’s algorithm in this setting. We believe AlphaEvolve and
coding agents like it can have a significant impact in improving solutions of problems across many areas
of science and computation.

1. Introduction

Discovering new high-value knowledge, such as making a novel scientific discovery or devel-
oping a commercially valuable algorithm, generally requires a prolonged process of ideation,
exploration, backtracking on unpromising hypotheses, experimentation, and validation.
There has been much recent interest in using large language models (LLMs) to automate
significant parts of this process. Hopes of success here are driven by the breathtaking power of
recent LLMs [31, 75], which can enhance their capabilities using test-time compute, and the
rise of agents that combine language generation and action [87, 113]. These advances have
improved performance across a range of established benchmarks and accelerated discovery-
oriented tasks like hypothesis generation [33] and experiment design [7, 42]. However,
getting LLM pipelines all the way to making entirely new scientific or practical discoveries
remains challenging.

In this white paper, we present an LLM code superoptimization agent, called AlphaEvolve,
that takes on this challenge using a combination of evolutionary computation and LLM-based
code generation. AlphaEvolve focuses on the broad spectrum of scientific and engineering

1See Acknowledgments and Author information section. *Equal contributions.

© 2025 Google DeepMind. All rights reserved

What Do We Do?

What Do We Do?

* Problem 1: How to decompose a tensor as a direct sum, or
equivalently, a partial decomposition?

What Do We Do?

* Problem 1: How to decompose a tensor as a direct sum, or
equivalently, a partial decomposition?

* Problem 2: How to decompose a tensor as a direct
product, i.e., a multiplicative decomposition?

What Do We Do?

* Problem 1: How to decompose a tensor as a direct sum, or
equivalently, a partial decomposition?

* Problem 2: How to decompose a tensor as a direct
product, i.e., a multiplicative decomposition?

* Problem %: Deterwine if a tensor is of rank one, or if a
homogeneous polynowial is a product of linear forwms.

Direct Sum

Direct Sum

*x Atensor Te U® V® Wis called a direct sum, if there
are7.c U QV.QW, (i=12)suchthat T=T7,+ T, in
the tensor space (v, 0 V)@V, @ V) @ (W, @ W) = UR V® W.

Direct Sum

*x Atensor Te U® V® Wis called a direct sum, if there
are7.c U QV.QW, (i=12)suchthat T=T7,+ T, in
the tensor space (v, 0 V)@V, @ V) @ (W, @ W) = UR V® W.

* [n terms of polynowials, this is equivalent to writing
fX,Y,2)=gX.,Y,,Z) + h(X,, Y, Z,) where X = X, u X,,
ete. In other words, separate variables of polynowials.

Strassen’s Additivity Conjecture

Strassen’s Additivity Conjecture

* Moultiplication of blocked matrices led Strassen to propose his
additivity conjecture:
Given7. c U@ V,.@ W, (i=1.2),letT=T, & T, in the tensor
space (U, U,) Q(V, bV, & (W, & W,).
Then R(T) = R(T;) + R(T>).

Strassen’s Additivity Conjecture

* Moultiplication of blocked matrices led Strassen to propose his
additivity conjecture:
Given7. c U@ V,.@ W, (i=1.2),letT=T, & T, in the tensor
space (U, @ U,) @ (V@ V,) & (W, & W,).
Then R(T) = R(T;) + R(T>).

* The conjecture is disproved by Shitov (Acta Math. 2019). I+
seems that the conjecture fails only in very strange situations.
It is of interest to consider the conditions for “=“ holds.

Direet Product

* Pefinition: A multivariate funetion f(x,,x,, ..., x) is
called a direct product if, atter a linear change of

variables, it can be written as a product of two or more

functions ig disjoint sets of variables
x=Py

fa) = gy Ly ey g,y), D<ag<n,
Call (x,, x,, ..., x) completely factorable, if it is a
product of » univariate functions.

Direet Sum vs Direet Product

* Lemwa. (1) f(x,, x,, ..., x) is a direct sum if and only if
exp’ is a direet produet. (2) g(x,, x,, ..., x,) is a direct
product if and only if log ¢ is a direct sum.

Center and Decompositions

* Pefinition: The center of an n-variate function
f(x, %, ..., x,) i defined as
Z(f) = {X € K™"|(HX)"' = HX},

62
where H = (f) is the hessian matrix of the
1<i,j<n

axian

function f(x;,x,, ...,x).

Center and Decompositions

* Proposition: (1) The center of a multivariate function is a
special Jordan algebra. (2) Direct sum decompositions of f
are in bijection with complete sets of orthogonal
idempotent of Z(1). (3) Direct product decompositions of
fare in bijection with complete setfs of orthogonal
idempotents of Z(logf) .

Toy Example 1

Toy Example 1

* IfF=x>+y°, thenits center Z(f) ~ K>

Toy Example 1

* IfF=x>+y°, thenits center Z(f) ~ K>

* General binary cubics: ayx” + 3a,x%y + 3a,xy° + a,y”

Toy Example 1

* IfF=x>+y°, thenits center Z(f) ~ K>
* General binary cubics: ayx” + 3a,x%y + 3a,xy° + a,y”

* Py dimension counting:
a0x3 + 3a1x2y + 3a2xy2 + a3y3 = (a;x + ﬁly)3 + (arx + ,Bzy)3

Toy Example 1

* IfF=x>+y°, thenits center Z(f) ~ K>
* General binary cubics: ayx” + 3a,x%y + 3a,xy° + a,y”

* Py dimension counting:
a0x3 + 3a1x2y + 3a2xy2 + a3y3 = (a;x + ﬁly)3 + (arx + ,Bzy)3

* (ardano formula revisited:
a0x3 + 3a1x2 + 3a,x + a3 = (ax + ﬁ1)3 + (x + ,52)3

Toy Example 2

Toy Example 2

* (Gonsider the following ternary cubic
(X1, %5, X3) = x13 i x23 s xg — 3XXX5 .

Toy Example 2

* (Gonsider the following ternary cubic
(X1, %5, X3) = x13 i x23 s x33 — 3XXX5 .

* The center of the function log fis

1 0 0 O 1 0 0 0 1
ZogfH)=Clo 1 o)+Clo o 1}+Cl1 0 0]).
0 0 1 1 0 0 01 0

Toy Example 2

Toy Example 2

* |t is easy to find three mutually orthogonal idempotents
in Z(log) which correspond o a complete factorization
of the polynowial 1(x,, x,, x).

Toy Example 2

* |t is easy to find three mutually orthogonal idempotents
in Z(log) which correspond o a complete factorization
of the polynowial 1(x,, x,, x).

* The polynowial 7is factorized as
F(xX1, %0, X3) = (x; + X% + X3)(X] + 0%, + ©7X3) (X + ©X, + wx3)

—1+\ﬁl

is a primitive cubic root of unity.

The Chow Variety

The Chow Variety

* Pefinition: The Chow variety of product of linear forwms is
the orbit ¢losure GL [x;x,---x].

The Chow Variety

* Pefinition: The Chow variety of product of linear forwms is
the orbit ¢losure GL [x;x,---x].

* Problem: determine whether a higher degree form is a
product of linear forws.

The Chow Variety

The Chow Variety

x Theorem: Suppose f € K[x, x,, ..., x,],. Then f= 141"/

(d; > 1, Vi) with linearly independent /s if and only if
Z(logf) = K".

The Chow Variety

x Theorem: Suppose f € K[x, x,, ..., x,],. Then f= 141"/

(d; > 1, Vi) with linearly independent /s if and only if
Z(logf) = K".

* Rewmark: Qur algorithm of direct product gives a simple
criterion and an efficient algorithwm fo completely
factorize a wmultivariate polynowial.

Toy Example 2

Toy Example 2

* (Consider the quartic x* + y* + (x + y)*. How do we
recognize the terms of powers of linear forms?

Toy Example 2

* (Consider the quartic x* + y* + (x + y)* . How do we
recognize the terms of powers of linear forms?

x By calculation, it is easy to observe that 0,0,(0, — 9,)

annihilates the previous quartic. Moreover, each linear
tactor of the annihilating differential polynowial
corresponds to a ferm of the Waring decomposition!

Hopft Pairing vs The Apolarity Method

Hopft Pairing vs The Apolarity Method

% vem)'re z@ — K[xl,.XQ, ‘¢ .,xn] a"d 9 == K[al, 82, asoaies an]- The" @
acts naturally as differentiation on %.

Hopft Pairing vs The Apolarity Method

% vem)'l'e @ — K[xl,.XQ, ‘¢ .,xn] a"d QZ == K[al, 02, asoaies an]- The" @
acts naturally as differentiation on %.

* % and 9 are Hopt algebras, and they are mutually graded
dual of each other. The previous action comes from Hopf
algebraic structures and it provides a nice Hopf pairing.

Hopft Pairing vs The Apolarity Method

% vem)'l'e z@ — K[xl,.XQ, ‘¢ .,xn] a"d QZ == K[al, 02, asoaies an]- The" @
acts naturally as differentiation on %.

* % and 9 are Hopt algebras, and they are mutually graded
dual of each other. The previous action comes from Hopf
algebraic structures and it provides a nice Hopf pairing.

* Rota highly advocated the Hopf algebraic approach to the
apolarity method and even the whole classical algebraic
invariant theory!

Hopft Pairing vs The Apolarity Method

Hopft Pairing vs The Apolarity Method

* Forfe # ,letf - ={gePD|geof=0}).Thenf isa
Gorenstein ideal and 2/ is a Gorenstein algebra. A well
known result of Macaulay says that: there is a bijection
between forms and graded Atinian Gorenstein algebras.

Hopft Pairing vs The Apolarity Method

* Forfe # ,letf - ={gePD|geof=0}).Thenf isa
Gorenstein ideal and 2/ is a Gorenstein algebra. A well
known result of Macaulay says that: there is a bijection
between forms and graded Atinian Gorenstein algebras.

x lfqge D, theng: = {fe Z | gof=0} c Zisa coideal.

Petermining g

amounts to solving a constant coefficient

PUE! For example, consider the Laplacian A = o; + ... + 0,
then A+ consists of the well-known harmonic polynomuals.

Hopft Pairing vs The Apolarity Method

Hopft Pairing vs The Apolarity Method

* The Apolarl’ry Lemma: Suppose 1 € Clxy, .., %], Then
f Z 4 (all’xl i aznxn)d S ﬂ I[al-l ey C]d_ '
=1 =1

Hopft Pairing vs The Apolarity Method

* For binary forms, we provide an elementary treatment.
For forms with more variables, it seems Hopf pairings
might be a promising approach.

A Briet Summary

A Briet Summary

* The problem of Tensor decompositions arises naturally
form arithwmetic, algebra, geometry, multilinear algebra,
data processing, and various other practical areas.

A Briet Summary

* The problem of Tensor decompositions arises naturally
form arithwmetic, algebra, geometry, multilinear algebra,
data processing, and various other practical areas.

* There remain many challenging problems. Methods from
Hopf algebras and tensor categories, representation
theory, invariant theory, algebraic geometry, and even
machine learning, artificial intelligence, ete. play
significant roles for further studying.

e

»

3
e

i he

—t

il

ol

i
4

s

o

| I SRE S

—tf.

4

T

2 B e A

{
1

}
i

|
i

e

]

al $ e
e 2 3
= s £7 L :...
2 fEES A % ,
| [
1
L' ! |
{ }
w 1
It s

s

NS ey

4
| w.
! | | 2

% e 1ok 1 1 3 hig
“ : w

s,

4 } { § -
=1 . : . : 1
{ _, H ! { £
{ i { s o

P
S

B3

R
A

g e

g

&

i

&

¥

ol

Thank You!

Thank You!

