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Topological motivation for graded structures

Monoidal categories play a central role in quantum topology:
they are used to define quantum invariants

Goal: extend quantum invariants of 3-manifolds to invariants
of 3-manifolds with extra structure

Encode the extra structure with a homotopy class of maps to
a target X (viewed as the classifying space of the structure)

Ex: X = BG with G a group↭ principal G-bundles
X = BG with G a 2-group↭ principal G-2-bundles

⇝ invariants of pairs
(
M closed oriented 3-manifold, h ∈ [M,X ]

)
Example: cohomological invariants from θ ∈ H3(X , k∗)

τθ(M, h) = ⟨h∗(θ), [M]⟩ ∈ k

h∗(θ) ∈ H3(M, k∗) and [M] ∈ H3(M,Z) fundamental class of M
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State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt}

(⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group

(⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

X is a 2-type: X ≃ BG with G a 2-group

Sözer-V. (2022)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)
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Monoidal categories graded by a group G

A k-linear monoidal category C is G-graded if
1 it decomposes as C =

⊕
g∈G Cg (set |X | = g for X ∈ Cg)

For homogenous objects: HomC(X ,Y) , 0 ⇒ |Y | = |X |
2 |X ⊗ Y | = |X | |Y | and |1| = 1

Ex: category of modules over a Hopf G-coalgebra A = {Ag}g∈G

Cg = Mod(Ag) ⊗C induced by ∆g,h : Agh → Ag ⊗k Ah

A G-fusion category is a rigid G-graded C =
⊕

g∈G Cg such that:
3 C is semisimple
4 each Cg has finitely many simple objects (up to iso)
5 the monoidal unit 1 simple

Ex: Modfd(A) with A = {Ag}g∈G semisimple of finite-type

G-vectω
k

where ω : G3 → k∗ is a 3-cocycle
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State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt} (⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group

(⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

Ex: G- vectω
k
f θ = [ω] ∈ H3(G, k∗) � H3(BG, k∗) ⇝ τθ

HTVG- vectω
k
(M, h) = τθ(M, h)



State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt} (⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group

(⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

Ex: G- vectω
k
f θ = [ω] ∈ H3(G, k∗) � H3(BG, k∗) ⇝ τθ

HTVG- vectω
k
(M, h) = τθ(M, h)



State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt} (⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group

(⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

Ex: G- vectω
k
f θ = [ω] ∈ H3(G, k∗) � H3(BG, k∗) ⇝ τθ

HTVG- vectω
k
(M, h) = τθ(M, h)



State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt} (⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group

(⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

Ex: G- vectω
k
f θ = [ω] ∈ H3(G, k∗) � H3(BG, k∗) ⇝ τθ

HTVG- vectω
k
(M, h) = τθ(M, h)



State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt} (⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group

(⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

Ex: G- vectω
k
f θ = [ω] ∈ H3(G, k∗) � H3(BG, k∗) ⇝ τθ

HTVG- vectω
k
(M, h) = τθ(M, h)



State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt} (⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group

(⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

Ex: G- vectω
k
f θ = [ω] ∈ H3(G, k∗) � H3(BG, k∗) ⇝ τθ

HTVG- vectω
k
(M, h) = τθ(M, h)



State sum invariants

A n-type is a connected CW-complex with πk = 0 for k > n.

X is a 0-type: X ≃ {pt} (⇔ G trivial)

Turaev-Viro (1992), Barret-Westburry (1996)

C spherical fusion category ⇝ TVC(M)

X is a 1-type: X ≃ BG with G a group (⇔ G discrete)

Turaev-V. (2012)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)

X is a 2-type: X ≃ BG with G a 2-group

Sözer-V. (2022)

C spherical G-fusion G-graded category ⇝ HTVC(M, h)



2-groups

A 2-group is a monoidal category G such that:
every morphism is invertible
for x ∈ G, there is x∗ ∈ G with x ⊗ x∗ � 1 � x∗ ⊗ x

Modelization:
A crossed module is

{
a group morphism χ : E → H
a left action of H on E

such that χ(he) = hχ(e)h−1 and χ(e)f = efe−1

Strictification: G ≃⊗ Gstrict⇝ crossed module χ : E → H

H = Ob(Gstrict) E = {morphisms of source 1} χ = target map

Reconstruction: crossed module χ : E → H⇝ strict 2-group Gχ

Ob(Gχ) = H HomGχ(x, y) =
{
e ∈ E | y = χ(e)x

}
(y

f
−→ z) ◦ (x

e
−→ y) = (x

fe
−→ z) (x

e
−→ y) ⊗ (z

f
−→ t) = (xz

exf
−−→ yt)
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Crossed modules and 2-types

A crossed module is
{

a group morphism χ : E → H
a left action of H on E

such that χ(he) = hχ(e)h−1 and χ(e)f = efe−1

Examples:
The inclusion E ↪→ H of a normal subgroup
Any epimorphism E ↠ H with central kernel
E → Aut(E) sending e ∈ E to the inner automorphism
∂ : π2(X ,A , ∗)→ π1(A , ∗) with ∗ ∈ A ⊂ X

The classifying space Bχ is a 2-type:

π1(Bχ) = Coker(χ), π2(Bχ) = Ker(χ), πk (Bχ) = 0 for k ≥ 3

MacLane-Whitehead (1950)

Crossed modules model all connected homotopy 2-types
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Monoidal categories graded by χ : E → H

A k-linear monoidal category C is χ-graded if:
1 Hom-spaces are E-graded:

HomC(X ,Y) =
⊕
e∈E

Home
C
(X ,Y)

← degree e homogeneous morphisms

For homogenous morphisms: |β ◦ α| = |β| |α| |idX | = 1

2 Associator and unitors are of degree 1

⇝ the monoidal subcategory C1 of degree 1 morphisms:
Ob(C1) = Ob(C) HomC1(X ,Y) = Hom1

C(X ,Y)

3 The subcategory C1 is H-graded
⇝ C has homogeneous objects with degree in H

4 For homogenous objects: Home
C
(X ,Y) , 0⇒ |Y | = χ(e) |X |

5 For homogenous morphisms: |α ⊗ β| = |α| |s(α)||β|
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Ob(C1) = Ob(C) HomC1(X ,Y) = Hom1

C(X ,Y)

3 The subcategory C1 is H-graded
⇝ C has homogeneous objects with degree in H

4 For homogenous objects: Home
C
(X ,Y) , 0⇒ |Y | = χ(e) |X |

5 For homogenous morphisms: |α ⊗ β| = |α| |s(α)||β|
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χ-fusion categories χ : E → H

A χ-fusion category is a χ-graded category C such that:
1 the H-graded subcategory C1 is H-fusion

(C not semisimple)

2 for all e ∈ E, each object X of C is a e-direct sum of simple
objects of C1 (X =

⊕
α sα with |sα ↪→ X | = e)

⇝ for a simple objet s of C1:
(
Home

C
(s,X)

)∗
� Home−1

C
(X , s)

Ex: the linearization kGχ of the 2-group Gχ is χ-fusion

Ob(kGχ) = H and Home
kGχ

(x, y) =

k if y = χ(e)x

0 otherwise

Twisting C by a 3-cocycle ω : H3 × E3 → k∗ for χ ⇝ χ-fusion Cω

ω
(
x, y, z, a, b , c

)
ω
(
x, χ(c)yz, t , ba x(c−1), f , d

)
ω
(
y, z, t , c, d, e

)
= ω
(
χ(a)xy, z, t , b , f , e

)
ω
(
x, y, χ(e)zt , a, fba xy(e−1)a−1, dc y(e−1)

)
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Graded 6j-symbols χ : E → H

C spherical χ-fusion category⇝ trace of degree 1 endomorphisms

The graded 6j-symbol associated with a 6-tuple (i, j, k , ℓ,m, n) of

objects and (e1, e2, e3, e4) ∈ E4 such that e1e2(
|ℓ|e3)e4 = 1 is

∣∣∣∣∣∣ i j k
ℓ m n

∣∣∣∣∣∣
e1,e2,e3,e4

:

 Ve1
n⊗i,m ⊗ Ve2

ℓ⊗j,n ⊗ Ve3
k ,j⊗i ⊗ Ve4

m,ℓ⊗k → k

α ⊗ β ⊗ γ ⊗ δ 7→ tr
(
α(β ⊗ idi)(idℓ ⊗ γ)δ

)
where Ve

X ,Y = Home
C
(X ,Y) |u ⊗ v | = |u| |s(u)||v |

|u ◦ v | = |u| |v |

More generally: isotopy invariant FC of C-colored χ-graphs in S2

∣∣∣∣∣∣i j k
l m n

∣∣∣∣∣∣
e1,e2,e3,e4

= FC


iii

jjj


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Graded 6j-symbols χ : E → H
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State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

M closed oriented 3-manifold, h ∈ [M,Bχ]

Pick a triangulation of M and g ∈ h with

g(vertices) = ∗ ∈ Bχ and g(edges) ⊂ BH ⊂ Bχ

e oriented edge ⇝ g(e) loop in BH ⇝ [g(e)] ∈ π1(BH, ∗) = H

f 2-face ⇝ g(∂f) loop in BH ⇝ af = [g(f)] ∈ π2(Bχ,BH, ∗) = E

c= χ-coloring of the edges : ce simple object of degree [g(e)]

HTVC(M, h) =
∑

c

∏
e

dim(ce)

 ctrf ( ⊗∆ |∆|) ∈ k
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State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

M
h
// Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

M

g
>>

h
// Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

M

g
>>

h
// Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

M

g
>>

h
// Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

M

g
>>

h
// Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



State sum invariants of 2-bundles over 3-manifolds

χ : E → H crossed module, C spherical χ-fusion category

Theorem (Sozer-V., 2022)
1 HTVC(M, h) is an invariant of h ∈ [M,Bχ]
2 HTVC can distinguish phantom maps
3 HTVC extends to a 3-dimensional HQFT with target Bχ

Ex: kGωχ f ω : H3 × E3 → k∗⇝ θ = [ω] ∈ H3(Bχ, k∗) ⇝ τθ

HTVkGωχ (M, h) = τ
θ(M, h)

Push-forwards: ϕ : χ↠ χ′ ⇝ ϕ∗(C) spherical χ′-fusion

HTVϕ∗(C)(M, h) =
∑

g∈[M,Bχ],Bϕ◦g=h

ηh(ηg)
−1 HTVC(M, g)

Bχ

Bϕ
��

M

g
>>

h
// Bχ′

where ηf =
∣∣∣∣π1

(
TOP(M,X), f

)∣∣∣∣ for f : M → X



Hopf χ-coalgebras χ : E → H

A Hopf χ-coalgebra is a Hopf H-coalgebra A = {Ax }x∈H

coproduct ∆ = {∆x,y : Axy → Ax ⊗ Ay }x,y∈H

counit ε : A1 → k

antipode S = {Sx : Ax−1 → Ax }x∈H

with a χ-action ϕ =
{
ϕx,e : Ax → Aχ(e)x

}
x∈H, e∈E algebra isos

∆x,y = ϕx,e = = =

Particular cases:
1 Hopf (1→ H)-coalgebras are Hopf H-coalgebras
2 For E abelian: Hopf (E → 1)-coalgebras are Hopf algebras

with an action of E by algebra and bicomodule automorphisms

Sözer-V. (2023)

Pairs (χ,A) are the Hopf algebras in Catop/Modk
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χ-graded categories from Hopf χ-coalgebras

Sözer-V. (2023)
1 Hopf χ-coalgebra A = {Ax }x∈H ⇝ χ-graded cat. Mod(A)

2 A involutory of finite type ⇒ Modfd(A) spherical χ-fusion

homogenous objects are Ax -modules with x ∈ H

for M an Ax -module, N an Ay -module, e ∈ E with y = χ(e)x,
homogeneous morphisms of degree e from M to N are
k-linear maps α : M → N such that

= where = ϕx,e

monoidal product is given byM,
 ⊗
N,

 =
M ⊗k N,


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for M an Ax -module, N an Ay -module, e ∈ E with y = χ(e)x,
homogeneous morphisms of degree e from M to N are
k-linear maps α : M → N such that

= where = ϕx,e

monoidal product is given byM,
 ⊗
N,

 =
M ⊗k N,
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Example of a Hopf χ-coalgebra

Z/4Z = {0̄, 1̄, 2̄, 3̄}
χ
−→ Z/2Z = {0, 1} χ(n̄) = 0 1n̄ = −n̄

Consider: A0 = C⟨a | a4 = 1⟩

� C4

A1 = C⟨u, v | u2 = 1 = v2, vu = −uv⟩

� M2(C)

with coproduct:

∆0,0(a) = (a ⊗ a)Ω(a2, a2) ∆1,1(a) = (u ⊗ u)Ω(−v, v)

∆0,1(u) = (a ⊗ u)Ω(a2, v) ∆0,1(v) = a2 ⊗ v

∆1,0(u) = (u ⊗ a)Ω(−v , a2) ∆1,0(v) = v ⊗ a2

Ω(s, t) =
1
2
(1 ⊗ 1 + s ⊗ 1 + 1 ⊗ t − s ⊗ t)

and χ-action: ϕ0,n̄(a) = (−1)na ϕ1,n̄(u) = (−1)nu ϕ1,n̄(v) = v

A = {A0,A1} is a Hopf χ-coalgebra which is involutory of finite type

⇒ Modfd(A) is a spherical χ-fusion category
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