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Topological motivation for graded structures

@ Monoidal categories play a central role in quantum topology:
they are used to define quantum invariants

@ Goal: extend quantum invariants of 3-manifolds to invariants
of 3-manifolds with extra structure

@ Encode the extra structure with a homotopy class of maps to
a target X (viewed as the classifying space of the structure)

Ex: X = BG with G a group « principal G-bundles
X = BG with G a 2-group «w principal G-2-bundles

~ invariants of pairs (M closed oriented 3-manifold, h € [M, X])

Example: cohomological invariants from 8 € H3(X,k*)

(M, h) = (h*(6), [M]) € k
h*(0) € H3(M,k*) and [M] € H3(M, Z) fundamental class of M
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a group morphism y: E - H

A crossed module is { a left action of Hon E

suchthat y("e) = hy(e)h™" and x(e)f — gfe~

Examples:
@ The inclusion E — H of a normal subgroup
@ Any epimorphism E —-» H with central kernel
@ E — Aut(E) sending e € E to the inner automorphism
@ 0: m(X,A, %) > (A, x) withxe A c X

The classifying space By is a 2-type:
n1(By) = Coker(y), m2(By) =Ker(y), nx(By)=0 fork >3

MaclLane-Whitehead (1950)
Crossed modules model all connected homotopy 2-types
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A k-linear monoidal category C is y-graded if:
@ Hom-spaces are E-graded:
Homg(X,Y) = @ Homg(X, Y) < degree e homogeneous morphisms

ecE
For homogenous morphisms: |5 a| = [6] || lidx| = 1

@ Associator and unitors are of degree 1
~> the monoidal subcategory C' of degree 1 morphisms:
Ob(C') =0b(C)  Homgi(X, Y) = Hom}(X, Y)

© The subcategory C' is H-graded
~> C has homogeneous objects with degree in H

© For homogenous objects: Homg(X,Y) #0 = |Y| = x(e) X

© For homogenous morphisms: |a® 8| = || |S(a)l|,3|



x-fusion categories Y:E—>H



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion (C not semisimple)



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion (C not semisimple)

@ forall e € E, each object X of C is a e-direct sum of simple
objects of C! (X = P, s, with |s, — X| =e)



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion (C not semisimple)

@ forall e € E, each object X of C is a e-direct sum of simple
objects of C! (X = P, s, with |s, — X| =e)

~» for a simple objet s of C': (Homg(s, X))* = H0m2,1(X’ s)



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion (C not semisimple)

@ forall e € E, each object X of C is a e-direct sum of simple
objects of C! (X = P, s, with |s, — X| =e)

~» for a simple objet s of C': (Homg(s, X))* = H0m2,1(X’ s)

Ex: the linearization kG, of the 2-group G, is y-fusion



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion (C not semisimple)

@ forall e € E, each object X of C is a e-direct sum of simple
objects of C! (X = P, s, with |s, — X| =e)

~» for a simple objet s of C': (Homg(s, X))* = H0m2,1(X’ s)

Ex: the linearization kG, of the 2-group G, is y-fusion

k ify =x(e)x

Ob(kG,) =H and Hom®, (x,y)=
(kGy) w6, (%Y) {o otherwise



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion (C not semisimple)

@ forall e € E, each object X of C is a e-direct sum of simple
objects of C! (X = P, s, with |s, — X| = e)

~» for a simple objet s of C': (Homg(s, X))* = H0m2,1(X’ s)

Ex: the linearization kG, of the 2-group G, is y-fusion

k ify =x(e)x

Ob(kgy,) =H and Hom’, (x,y) =
(kGy) w, (% Y) {o otherwise

Twisting C by a 3-cocycle w: H® x E® — k* for y ~> y-fusion C¥



x-fusion categories Y:E—>H

A y-fusion category is a y-graded category C such that:
@ the H-graded subcategory C' is H-fusion (C not semisimple)

@ forall e € E, each object X of C is a e-direct sum of simple
objects of C! (X = P, s, with |s, — X| = e)

~» for a simple objet s of C': (Homg(s, X))* = H0m2,1(X’ s)

Ex: the linearization kG, of the 2-group G, is y-fusion
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Ob(kgy,) =H and Hom’, (x,y) =
(kGy) w, (% Y) {o otherwise

Twisting C by a 3-cocycle w: H® x E® — k* for y ~> y-fusion C¥
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x: E — Hcrossed module, C spherical y-fusion category
Theorem (Sozer-V., 2022)

@ HTV¢(M, h) is an invariant of h € [M, By]
@ HTV, can distinguish phantom maps
© HTV extends to a 3-dimensional HQFT with target By

Ex: kGy « w: H3 x E3 — k* w» 0 = [w] € H3(By,k*) ~» 70
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