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Known results

@ The story about classification of some algebras according to their
representation type is quite long and seems not so active today.

@ Here we only recall two results for Hopf algebras case.

@ The classification for finite-dimensional cocommutative Hopf
algebras, i.e., finite algebraic groups, of finite representation type
and tame type was given by R. Farnsteiner [Farnsteiner,
2000-2007] mainly.

From representation theoretic point of view, he proved the
following result:

Theorem

(1) A finite algebraic group G is of finite representation type iff
H(G) := O(G)* is a Nakayama algebra;
(2) If G is tame, then H(G) is special biserial.
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Known results

@ For elementary (basic) Hopf algebras, the speaker and his
collaborators got the following results from 2005 to 2012, also
from representation theoretic point of view.
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Natural question
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Natural question

@ Combining the results above, we can form the following question
naturally:
Problem 1.
Let H be a finite dimensional Hopf algebra. Do we always have
(1)H is of finite representation type iff H is a Nakayama algebra?
(2) If His tame, then H is special biserial?

@ We test them through using Hopf algebras with (dual) Chevalley
property.
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e Hopf algebras with Chevalley property
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@ Let H be a finite dimensional Hopf algebra.
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@ Let H be a finite dimensional Hopf algebra.
Definition
o His called to have Chevalley property if its radical Jy is a Hopf ideal.

e H is called to have dual Chevalley property if its coradical Hy is a Hopf
subalgebra.

@ H has Chevalley property if and only if H* has dual Chevalley
property.
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Example

1) All elementary Hopf algebras are Hopf algebras with Chevalley
property.
2) All pointed Hopf algebras are Hopf algebras with dual Chevalley
property.
3) The following Hopf algebra is one with (dual) Chevalley property.
Ho  is generated by c, b, x, y with relations:

o c?2=1, p»=1, xX2=J(1+c+b—-cb), cb=bc, xc=bx, xb=cx,

e y>=0, yc=—cy, yb=—by, yx =+/—1cxy.
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Example

1) All elementary Hopf algebras are Hopf algebras with Chevalley
property.
2) All pointed Hopf algebras are Hopf algebras with dual Chevalley
property.
3) The following Hopf algebra is one with (dual) Chevalley property.
Ho  is generated by c, b, x, y with relations:
o c?2=1, p»=1, xX2=J(1+c+b—-cb), cb=bc, xc=bx, xb=cx,
e y2=0, yc=—cy, yb=—by, yx =+ —1cxy.
The coalgebra and antipode are given by:
e A(c)=c®ec, e(c)=1, S(c)=c,
o A(b)=bab, e(b)=1, S(b)=b,
o A(X)=1(x®Xx+bx®x+x®cx —bx®cx), e(x)=1, S(x)=x,
°o Aly)=cey+yel, ey)=0, Sy)=-cy.
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Local Hopf quiver

@ Letl = (Ip,1) be a quiver where Iy vertices, 'y arrows.
@ Forace g,

o(a) : the number of arrows with starting vertex a

i(a) : the number of arrows with ending vertex a.
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Definition 2. A quiver I' = (I'y, 1) is called a local Hopf quiver if
e o(a) = i(a) for a € I'y and we denote this number by n,;
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Local Hopf quiver

Definition 2. A quiver I' = (I'y, 1) is called a local Hopf quiver if

e o(a) = i(a) for a € I'y and we denote this number by n,;
@ ng=np=:nrforany a,b € ly;
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Local Hopf quiver

Definition 2. A quiver I' = (I'y, 1) is called a local Hopf quiver if

e o(a) = i(a) for a € I'y and we denote this number by n,;
@ ng=np=:nrforany a,b € ly;
e all connected components are same.
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Local Hopf quiver

Example
For any natural number n, the basic cycle of length n:
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Local Hopf quiver

Example
For any natural number n, the basic cycle of length n:

P

® Vp_1 ° Vy

®Vh 2

°*Vy 3
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Local Hopf quiver

Theorem

Let H be a finite dimensional Hopf algebra.
e (Green-solberg) If H is elementary, then its Gabriel’s quiver is a local
Hopf quiver;
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Local Hopf quiver

The dual Gabriel quiver of above H x is shown below:

KC /@l.)c
¥) ( ) (cy)  (by) ( ) (bey) XC-E
m.1 ,;b
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Local Hopf quiver

The dual Gabriel quiver of above H x is shown below:

KC rbc

(y)< )(Cy) (by)< )(bcy) XC-E
m.1 ,;b

H x is neither elementary nor pointed.
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Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel’'s quiver I'(H)
is a local Hopf quiver.
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Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel’'s quiver I'(H)
is a local Hopf quiver. So we have a natural number

ny = nr(H).
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Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel’'s quiver I'(H)
is a local Hopf quiver. So we have a natural number
Ny = Nr(H)-The following is one of the speaker’s observation.
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Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel’s quiver I'(H)
is a local Hopf quiver. So we have a natural number
Ny = Nr(H)-The following is one of the speaker’s observation.

Theorem

Let H be an elementary Hopf algebra, then

(i) H is of finite representation type if and only if ny =0 orny =1;
(i) If H is tame, then ny = 2;

(iii) If ny > 3, then H is of wild type.
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e Some results and new Hopf algebras
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Multiplicative and primitive matrices

Definition

Let (H, A, ¢) be a coalgebra over k.
(1) A square matrix G = (gj)rxr over H is said to be multiplicative, if for any
r

1 <i,j<r, wehave A(gj) = >_ git ® gy and e(gj)) = dij, where d;
t=1
denotes the Kronecker notation;

(2) A multiplicative matrix C is said to be basic, if its entries are linearly
independent.
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Multiplicative and primitive matrices

Definition
Let (H, A, ¢) be a coalgebra over k.
(1) A square matrix G = (gj)rxr over H is said to be multiplicative, if for any
r

1 <i,j<r, wehave A(gj) = >_ git ® gy and e(gj)) = dij, where d;
t=1
denotes the Kronecker notation;

(2) A multiplicative matrix C is said to be basic, if its entries are linearly
independent.

Above definition formally implies that

A(C) =C ®C,€(C) = E,.

@ The set of all the simple subcoalgebras of H is denoted by S,
which corresponds a complete set of basic multiplicative matrices.
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Multiplicative and primitive matrices

Definition
Let (H, A, ¢) be a coalgebra over «. Suppose C = (¢j)rxr and
D = (dj)sxs are basic multiplicative matrices over H.

(1) A matrix X = (x;),xs over H is said to be (C, D)-primitive, if

r S
A(X,'j) = Z Cik @ Xij + ZX,'[ ® dtj
k=1 t=1
holds forany 1 <i,j <r;

(2) A primitive matrix X is said to be non-trivial, if there exists some entry of
X which does not belong to the coradical Hj.
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Multiplicative and primitive matrices

Definition
Let (H, A, ¢) be a coalgebra over «. Suppose C = (¢j)rxr and

D = (dj)sxs are basic multiplicative matrices over H.
(1) A matrix X = (x;),xs over H is said to be (C, D)-primitive, if

r S
A(X,'j) = Z Cik @ Xij + ZX,'[ ® dtj
k=1 t=1
holds forany 1 <i,j <r;

(2) A primitive matrix X is said to be non-trivial, if there exists some entry of
X which does not belong to the coradical Hj.

Above definition formally implies that

AX)=CoX +X @D,
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Multiplicative and primitive matrices

@ Denote 'S={CcS|xl1+C#r1AC}. Forany C<c 'S, we can
fix a complete family {Xé%)}%erc of non-trivial (1, C)-primitive
matrices.
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Multiplicative and primitive matrices

@ Denote 'S={CcS|xl1+C#r1AC}. Forany C<c 'S, we can
fix a complete family {Xé%)}merc of non-trivial (1, C)-primitive
matrices.

@ Denote

Po= (J A0 e el
cels
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Finite type and tame type

Theorem

Let k be an algebraically closed field of characteristic 0 and H a

finite-dimensional nonsemisimple Hopf algebra over « with the dual
Chevalley property.
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Finite type and tame type

Theorem

Let k be an algebraically closed field of characteristic 0 and H a

finite-dimensional nonsemisimple Hopf algebra over « with the dual
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(1) H is of finite corepresentation type if and only if | P |= 1 and
dim.(C) =1, where C € 'S.
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Finite type and tame type

Theorem

Let k be an algebraically closed field of characteristic 0 and H a
finite-dimensional nonsemisimple Hopf algebra over « with the dual
Chevalley property.
(1) H is of finite corepresentation type if and only if | P |= 1 and
dim,(C) =1, where C € 'S.

(2) If H is of tame corepresentation type, then one of the following two
cases appears:
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Finite type and tame type

Theorem

Let k be an algebraically closed field of characteristic 0 and H a

finite-dimensional nonsemisimple Hopf algebra over « with the dual
Chevalley property.

(1) H is of finite corepresentation type if and only if | P |= 1 and
dim.(C) =1, where C € 'S.

(2) If H is of tame corepresentation type, then one of the following two
cases appears:

(i) |'"P|=2andforany C €'S, dim.(C)=1;
(iy |'"P |=1 anddim.(C) =4, where C €'S.

(3) If one of the following holds, H is of wild corepresentation type.
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Finite type and tame type

Theorem

Let k be an algebraically closed field of characteristic 0 and H a

finite-dimensional nonsemisimple Hopf algebra over « with the dual
Chevalley property.

(1) H is of finite corepresentation type if and only if | P |= 1 and
dim.(C) =1, where C € 'S.

(2) If H is of tame corepresentation type, then one of the following two
cases appears:

(i) |'"P|=2andforany C €'S, dim.(C)=1;
(i) |'P |=1 anddim.(C) = 4, where C € 'S.

(3) If one of the following holds, H is of wild corepresentation type.
0 [P =38

(i) | P |= 2 and there exists some C € 'S such that dim,.(C) > 4;
(i) |'P|=1anddim.(C)>9, where C€'S.
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Finite representation type

Corollary

Let H be a finite dimensional Hopf algebra with Chevalley property.
Then the following are equivalent:
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Finite representation type

Corollary

Let H be a finite dimensional Hopf algebra with Chevalley property.
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e H is of finite representation type;
e H is a Nakayama algebra;

e [(H) is a disjoint union of basic cycles.

@ This suggests the following conjecture:
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Finite representation type

Corollary

Let H be a finite dimensional Hopf algebra with Chevalley property.

Then the following are equivalent:
e H is of finite representation type;

e H is a Nakayama algebra;

e [(H) is a disjoint union of basic cycles.

@ This suggests the following conjecture:
Conjecture. Let H be a finite dimensional Hopf algebra. Then H
is of finite representation type if and only if H is a Nakayama
algebra.

Gongxiang Liu (NJU) Representation type 21/37



Example

e H, x is of finite corepresentation type since its dual Gabriel quiver is
KC kbc
() [ J
¥) < ) (cy) (by) ( ) (bey) X C’E
[} [
K1 kb
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Tame type-Example

Example

o Let Hsp be the Hopf algebra of dimensional 32 which is generated by
z,y,t p1, pe satisfying the following relations:

0 2=1, y?=1, B=1, zy=yz, tz=2zt ty=yt,
@ Zpi =piZ, yp1 = piy, 1= —pit, ZD2 = P22, YP2 = P2y, 02 = —pet,
° pi=A(1-2), pp=-A(1-2), pipz+pepr =0.
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Tame type-Example

Example

o Let Hsp be the Hopf algebra of dimensional 32 which is generated by

z,y,t p1, pe satisfying the following relations:

o =1, yP=1, P=1, zy=yz, tz=2zt, ty=yt,

© 2Py =piZ, Ypi =Py, o1 = —pit, ZP2 = P22, yp2 = P2y, lo2 =
o pi=A(1-2), PE=-A(1-2), pip2+pep1 =0.

The coalgebra structure and antipode are given by:

A(z)=z®2z, Aly)=y®Yy, &(2)=¢(y) =1,

AN =31 +tet+(1 -yt zt], &t) =1,

S(z) =2z S(y)=y, S(t)=3[(1+y)t+(1 -y,
Ap)=p1@1+3(1+2)tep+3(1—-2)yt@pe,
Ap)=p1+i(1+2)ytep+i(1-2)tep.

—P2 t7
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Tame type-Example

The dual Gabriel’'s quiver of Hss is shown below:

It is apparent that H is of infinite corepresentation type and in fact

tame.
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Theorem

Let  be an algebraically closed field of characteristic 0 and H a
finite-dimensional Hopf algebra over « with Chevalley property.

Gongxiang Liu (NJU)
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Theorem

Let  be an algebraically closed field of characteristic 0 and H a
finite-dimensional Hopf algebra over « with Chevalley property. Then
gr(H) is of tame type if and only if

gr(H) = (v, ¥)/1) x H/Jn

for ideal | Which is one of the following forms:

(1) I=(x®—y? yx —ax? xy) for0 #ac x;

) (x2,y2, (xy)™ — a(yx)™) for0 £ ac x andm > 1;
(3) I=(x"—y" xy,yx) forn>2;
(4) 1= (x2,y2, (xy)"x — (yx)™y) form > 1.

@) I=
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Remark and conjecture

Remark
Hss is tame while it is not special biserial. J
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Remark and conjecture

Remark
Hss is tame while it is not special biserial. J

Conjecture. Let H be a finite dimensional Hopf algebra with dual
Chevalley property and Q(H) its dual Gabriel’s quiver. Then
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Remark and conjecture

Remark
Hss is tame while it is not special biserial. J

Conjecture. Let H be a finite dimensional Hopf algebra with dual
Chevalley property and Q(H) its dual Gabriel’s quiver. Then

e o(a)=i(a) forae Q(H)o;

e o(1)|o(a) for a € Q(H)o.-

Gongxiang Liu (NJU) Representation type 26/37



Discrete corepresentation type

@ In the following, we don’t require H to be finite dimensional.
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@ In the following, we don’t require H to be finite dimensional.

Definition
A coalgebra H is said to be of discrete corepresentation type, if for any

finite dimension vector d, there are only finitely many non-isomorphic
indecomposable right H-comodules of dimension vector d.
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Discrete corepresentation type

@ In the following, we don’t require H to be finite dimensional.

Definition
A coalgebra H is said to be of discrete corepresentation type, if for any

finite dimension vector d, there are only finitely many non-isomorphic
indecomposable right H-comodules of dimension vector d.

@ So if H is of finite dimensional, then H is of discrete

corepresentation type if and only if it is of finite corepresentation
type by Brauer-Thrall Theorem.
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Discrete corepresentation type

Theorem

Let H be a non-cosemisimple Hopf algebra over « with the dual
Chevalley property and Hy) be its link-indecomposable component
containing 1. If the coradical of Hyy is finite dimensional,
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Let H be a non-cosemisimple Hopf algebra over « with the dual
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containing 1. If the coradical of H(1) is finite dimensional, then the
following statements are equivalent:
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Discrete corepresentation type

Theorem

Let H be a non-cosemisimple Hopf algebra over « with the dual
Chevalley property and Hy) be its link-indecomposable component
containing 1. If the coradical of H(1) is finite dimensional, then the
following statements are equivalent:

(1) H is of discrete corepresentation type;

(2) Every vertex in Q(H) is both the start vertex of only one arrow and the
end vertex of only one arrow, that is, Q(H) is a disjoint union of basic
cycles;

(8) There is only one arrow C — x1 in Q(H) whose end vertex is k1 and
dim,(C) =1;

(4) There is only one arrow k1 — D in Q(H) whose start vertex is k1 and
dim.(D) = 1.
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Discrete corepresentation type

Theorem

Let H be a non-cosemisimple Hopf algebra over . with the dual
Chevalley property of discrete corepresentation type and Hyy be its
link-indecomposable component containing 1. Denote

18§ ={C e 8| rl1+C+#~r1AC}. Ifthe coradical of Hyy is
infinite-dimensional,
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Discrete corepresentation type

Theorem

Let H be a non-cosemisimple Hopf algebra over . with the dual
Chevalley property of discrete corepresentation type and Hyy be its
link-indecomposable component containing 1. Denote

18§ ={C e 8| rl1+C+#~r1AC}. Ifthe coradical of Hyy is

infinite-dimensional, then one of the following three cases appears:
(1) |'"P|=1and'S = {kg} for some g € G(H);

(2) |'"P |=2and'S = {kg, kh} for some different group-like elements g, h;
(3) |'"P |=1and'S = {C«} for some Cx € S with dim,(Cy) = 4.
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Discrete corepresentation type

Remark

Note that in the above theorem, cases (1) and (2) imply that Hy is
pointed which already was considered before. One of our contributions
is to show that the case (3) indeed occurs.
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Discrete corepresentation type

Remark

Note that in the above theorem, cases (1) and (2) imply that Hy is
pointed which already was considered before. One of our contributions
is to show that the case (3) indeed occurs.

Example

As an algebra, H(e+1, fL1,u, v) is generated by u, v, e;, f; for i € Z,
subject to the following relations

1=eo+h, ee=ey fifi=Tf efj=rfe =0,
eiu=(—1)ue;, fiu=(-1)uf, ev=(-1)ve;, fiv=(-1)vf
w=v2=0, uv=—-w,

forany i,j € Z.
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Discrete corepresentation type

Example
The comultiplication, counit and the antipode are given by

Ale)=eQe+ i ee)=1, M=

Alf)=eefi+fiwe; (f)=0, S(f)= f,
Al=1ut+uxe +vefq, Uu)= =
A(v)=1@v+uefi+vee, eVv)=0 S()

—Vf_1 —ue_q,
= —ufy — vey,

forany i € Z.
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Discrete corepresentation type

Example

The link quiver of H(ex1, fi1, u, v) is of the following form:
kg
K1 C C & @
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Further new Hopf algebras

@ In above example, the coradical Hy is indeed a kind of abelian
extension.
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@ In above example, the coradical Hy is indeed a kind of abelian
extension.

Definition
A Hopf extension

KS5HDA

is called abelian if A is cocommutative and K is commutative.
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Further new Hopf algebras

@ In above example, the coradical Hy is indeed a kind of abelian
extension.

Definition
A Hopf extension

KS5HDA

is called abelian if A is cocommutative and K is commutative.

@ Let G, F be finite groups and «¢ denote the dual Hopf algebra of
k@G. Abelian extensions

KCLH HD kF

of kF by k% were classified by Masuoka(2002), and the above H
can be expressed as kC%#, , kF.

Gongxiang Liu (NJU) Representation type 33/37



Further new Hopf algebras

@ We can consider abelian extension with F maybe infinite.
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Further new Hopf algebras

@ We can consider abelian extension with F maybe infinite.

Let Z, = {g | g? = 1}. Define group actions Z, < Z, x Z <> Z on the
sets by
14i=1, g«i=g, 1>i=i, g>ri=—i,

for any i € Z. Consider the case when ¢ and 7 are trivial, that is,
oi,j) =1
and
T(X)=1®1

forany i,j € Z and x € Z,. In such a case, let H(Z,7Z,) be the abelian
extension. Then H(Z,Z,) is indeed the coradical of the Hopf algebra in
the previous Example.

v
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Further new Hopf algebras

@ One can generalize above example further.
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Further new Hopf algebras

@ One can generalize above example further.

Let G = Zo, = {g | g°" = 1} for some n > 1. Define group actions
Zoon < Zop x 7 2> 7. on the sets by
gej=(-1)) g'4j=4d.

forany 1 < i <2n, j € Z. Consider the case when ¢ and 7 are trivial,
thatis, o(i,j) =1and 7(x) =1® 1 forany i,j € Z and x € Zy,. In such
a case, let H(Z,Z5,) be the abelian extension. Then

H(Z, Zon) & kZop & (P EB EX.

]€Z+ k=0
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Further new Hopf algebras

@ We get the following general observation.
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Further new Hopf algebras

@ We get the following general observation.

Proposition
All abelian extensions
kG S HI kF

with G being finite are cosemisimple.
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Thank you for your attention!
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