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Known results

The story about classification of some algebras according to their
representation type is quite long and seems not so active today.

Here we only recall two results for Hopf algebras case.
The classification for finite-dimensional cocommutative Hopf
algebras, i.e., finite algebraic groups, of finite representation type
and tame type was given by R. Farnsteiner [Farnsteiner,
2000-2007] mainly.
From representation theoretic point of view, he proved the
following result:

Theorem
(1) A finite algebraic group G is of finite representation type iff
H(G) := O(G)∗ is a Nakayama algebra;
(2) If G is tame, then H(G) is special biserial.
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Known results

For elementary (basic) Hopf algebras, the speaker and his
collaborators got the following results from 2005 to 2012 , also
from representation theoretic point of view.

Theorem
Let H be a finite dimensional basic Hopf algebra. Then
(1) H is of finite representation type iff H is a Nakayama algebra;
(2) If H is tame, then H is special biserial.
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Natural question

Combining the results above, we can form the following question
naturally:

Problem 1.
Let H be a finite dimensional Hopf algebra. Do we always have
(1)H is of finite representation type iff H is a Nakayama algebra?
(2) If H is tame, then H is special biserial?
We test them through using Hopf algebras with (dual) Chevalley
property.
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Definition

Let H be a finite dimensional Hopf algebra.

Definition
H is called to have Chevalley property if its radical JH is a Hopf ideal.

H is called to have dual Chevalley property if its coradical H0 is a Hopf
subalgebra.

H has Chevalley property if and only if H∗ has dual Chevalley
property.
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Example

Example
1) All elementary Hopf algebras are Hopf algebras with Chevalley
property.

2) All pointed Hopf algebras are Hopf algebras with dual Chevalley
property.
3) The following Hopf algebra is one with (dual) Chevalley property.
H2,K is generated by c,b, x , y with relations:

c2 = 1, b2 = 1, x2 = 1
2 (1 + c + b − cb), cb = bc, xc = bx , xb = cx ,

y2 = 0, yc = −cy , yb = −by , yx =
√
−1cxy .

The coalgebra and antipode are given by:

∆(c) = c ⊗ c, ε(c) = 1, S(c) = c,

∆(b) = b ⊗ b, ε(b) = 1, S(b) = b,

∆(x) = 1
2 (x ⊗ x + bx ⊗ x + x ⊗ cx − bx ⊗ cx), ε(x) = 1, S(x) = x ,

∆(y) = c ⊗ y + y ⊗ 1, ε(y) = 0, S(y) = −c−1y .
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Local Hopf quiver

Let Γ = (Γ0, Γ1) be a quiver where

Γ0 vertices, Γ1 arrows.
For a ∈ Γ0,

o(a) : the number of arrows with starting vertex a

i(a) : the number of arrows with ending vertex a.

Gongxiang Liu (NJU) Representation type 10 / 37



Local Hopf quiver

Let Γ = (Γ0, Γ1) be a quiver where Γ0 vertices, Γ1 arrows.

For a ∈ Γ0,

o(a) : the number of arrows with starting vertex a

i(a) : the number of arrows with ending vertex a.

Gongxiang Liu (NJU) Representation type 10 / 37



Local Hopf quiver

Let Γ = (Γ0, Γ1) be a quiver where Γ0 vertices, Γ1 arrows.
For a ∈ Γ0,

o(a) : the number of arrows with starting vertex a

i(a) : the number of arrows with ending vertex a.

Gongxiang Liu (NJU) Representation type 10 / 37



Local Hopf quiver

Let Γ = (Γ0, Γ1) be a quiver where Γ0 vertices, Γ1 arrows.
For a ∈ Γ0,

o(a) : the number of arrows with starting vertex a

i(a) : the number of arrows with ending vertex a.

Gongxiang Liu (NJU) Representation type 10 / 37



Local Hopf quiver

Let Γ = (Γ0, Γ1) be a quiver where Γ0 vertices, Γ1 arrows.
For a ∈ Γ0,

o(a) : the number of arrows with starting vertex a

i(a) : the number of arrows with ending vertex a.

Gongxiang Liu (NJU) Representation type 10 / 37



Local Hopf quiver

Definition 2. A quiver Γ = (Γ0, Γ1) is called a local Hopf quiver if

o(a) = i(a) for a ∈ Γ0 and we denote this number by na;
na = nb =: nΓ for any a,b ∈ Γ0;
all connected components are same.
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Local Hopf quiver

Example
For any natural number n, the basic cycle of length n:

•v0H
HHH

Hj• v1

?• v2····• vn−3
H

HHY
• vn−2

6

• vn−1
�
�
��3
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Local Hopf quiver

Theorem
Let H be a finite dimensional Hopf algebra.

(Green-solberg) If H is elementary, then its Gabriel’s quiver is a local
Hopf quiver;

(Cibils-Rosso) If H is pointed, then its dual Gabriel’s quiver is a local
Hopf quiver.
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Local Hopf quiver

Example
The dual Gabriel quiver of above H2,k is shown below:

κc

κ1

κbc

κb

EX(y) (cy) (by) (bcy)

H2,k is neither elementary nor pointed.

Gongxiang Liu (NJU) Representation type 14 / 37



Local Hopf quiver

Example
The dual Gabriel quiver of above H2,k is shown below:

κc

κ1

κbc

κb

EX(y) (cy) (by) (bcy)

H2,k is neither elementary nor pointed.

Gongxiang Liu (NJU) Representation type 14 / 37



Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel’s quiver Γ(H)
is a local Hopf quiver.

So we have a natural number
nH := nΓ(H).The following is one of the speaker’s observation.

Theorem
Let H be an elementary Hopf algebra, then
(i) H is of finite representation type if and only if nH = 0 or nH = 1;
(ii) If H is tame, then nH = 2;
(iii) If nH ≥ 3, then H is of wild type.
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Multiplicative and primitive matrices

Definition
Let (H,∆, ε) be a coalgebra over κ.
(1) A square matrix G = (gij)r×r over H is said to be multiplicative, if for any

1 ≤ i , j ≤ r , we have ∆(gij) =
r∑

t=1
git ⊗ gtj and ε(gij) = δi,j , where δi,j

denotes the Kronecker notation;

(2) A multiplicative matrix C is said to be basic, if its entries are linearly
independent.

Above definition formally implies that

∆(C) = C ⊗ C, ε(C) = Er .

The set of all the simple subcoalgebras of H is denoted by S,
which corresponds a complete set of basic multiplicative matrices.
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Multiplicative and primitive matrices

Definition
Let (H,∆, ε) be a coalgebra over κ. Suppose C = (cij)r×r and
D = (dij)s×s are basic multiplicative matrices over H.
(1) A matrix X = (xij)r×s over H is said to be (C,D)-primitive, if

∆(xij) =
r∑

k=1

cik ⊗ xkj +
s∑

t=1

xit ⊗ dtj

holds for any 1 ≤ i , j ≤ r ;

(2) A primitive matrix X is said to be non-trivial, if there exists some entry of
X which does not belong to the coradical H0.

Above definition formally implies that

∆(X ) = C ⊗ X + X ⊗D.
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(1) A matrix X = (xij)r×s over H is said to be (C,D)-primitive, if

∆(xij) =
r∑

k=1

cik ⊗ xkj +
s∑

t=1

xit ⊗ dtj

holds for any 1 ≤ i , j ≤ r ;

(2) A primitive matrix X is said to be non-trivial, if there exists some entry of
X which does not belong to the coradical H0.

Above definition formally implies that

∆(X ) = C ⊗ X + X ⊗D.
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Multiplicative and primitive matrices

Denote 1S = {C ∈ S | κ1 + C ̸= κ1 ∧C}. For any C ∈ 1S , we can
fix a complete family {X (γC)

C }γC∈ΓC of non-trivial (1, C)-primitive
matrices.

Denote

1P :=
⋃

C∈1S

{X (γC)
C | γC ∈ ΓC}.
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Finite type and tame type

Theorem
Let κ be an algebraically closed field of characteristic 0 and H a
finite-dimensional nonsemisimple Hopf algebra over κ with the dual
Chevalley property.

(1) H is of finite corepresentation type if and only if | 1P |= 1 and
dimκ(C) = 1, where C ∈ 1S.

(2) If H is of tame corepresentation type, then one of the following two
cases appears:

(i) | 1P |= 2 and for any C ∈ 1S, dimκ(C) = 1;
(ii) | 1P |= 1 and dimκ(C) = 4, where C ∈ 1S.

(3) If one of the following holds, H is of wild corepresentation type.

(i) | 1P |≥ 3;
(ii) | 1P |= 2 and there exists some C ∈ 1S such that dimκ(C) ≥ 4;
(iii) | 1P |= 1 and dimκ(C) ≥ 9, where C ∈ 1S.
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Finite representation type

Corollary
Let H be a finite dimensional Hopf algebra with Chevalley property.
Then the following are equivalent:

H is of finite representation type;

H is a Nakayama algebra;

Γ(H) is a disjoint union of basic cycles.

This suggests the following conjecture:
Conjecture. Let H be a finite dimensional Hopf algebra. Then H
is of finite representation type if and only if H is a Nakayama
algebra.
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Example

Example
H2,k is of finite corepresentation type since its dual Gabriel quiver is

κc

κ1

κbc

κb

EX(y) (cy) (by) (bcy)
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Tame type-Example

Example
Let H32 be the Hopf algebra of dimensional 32 which is generated by
z, y , t ,p1,p2 satisfying the following relations:

z2 = 1, y2 = 1, t2 = 1, zy = yz, tz = zt , ty = yt ,
zp1 = p1z, yp1 = p1y , tp1 = −p1t , zp2 = p2z, yp2 = p2y , tp2 = −p2t ,
p2

1 = λ (1 − z) , p2
2 = −λ (1 − z) , p1p2 + p2p1 = 0.

The coalgebra structure and antipode are given by:
∆(z) = z ⊗ z, ∆(y) = y ⊗ y , ε(z) = ε(y) = 1,
∆(t) = 1

2 [(1 + y)t ⊗ t + (1 − y)t ⊗ zt ] , ε(t) = 1,
S(z) = z, S(y) = y , S(t) = 1

2 [(1 + y)t + (1 − y)zt ] ,
∆(p1) = p1 ⊗ 1 + 1

2 (1 + z) t ⊗ p1 +
1
2 (1 − z) yt ⊗ p2,

∆(p2) = p2 ⊗ 1 + 1
2 (1 + z) yt ⊗ p2 +

1
2 (1 − z) t ⊗ p1.
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Tame type-Example

Example
The dual Gabriel’s quiver of H32 is shown below:

E

κ1

κz

κyκzy

X5 X1

X2 X6

X8

X3

X4

X7

It is apparent that H is of infinite corepresentation type and in fact
tame.
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Tame type

Theorem
Let κ be an algebraically closed field of characteristic 0 and H a
finite-dimensional Hopf algebra over κ with Chevalley property.

Then
gr(H) is of tame type if and only if

gr(H) ∼= (κ⟨x , y⟩/I)× H/JH

for ideal I which is one of the following forms:
(1) I = (x2 − y2, yx − ax2, xy) for 0 ̸= a ∈ κ;

(2) I = (x2, y2, (xy)m − a(yx)m) for 0 ̸= a ∈ κ and m ≥ 1;

(3) I = (xn − yn, xy , yx) for n ≥ 2;

(4) I = (x2, y2, (xy)mx − (yx)my) for m ≥ 1.
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Remark and conjecture

Remark
H32 is tame while it is not special biserial.

Conjecture. Let H be a finite dimensional Hopf algebra with dual
Chevalley property and Q(H) its dual Gabriel’s quiver. Then

o(a) = i(a) for a ∈ Q(H)0;
o(1)|o(a) for a ∈ Q(H)0.
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Discrete corepresentation type

In the following, we don’t require H to be finite dimensional.

Definition
A coalgebra H is said to be of discrete corepresentation type, if for any
finite dimension vector d , there are only finitely many non-isomorphic
indecomposable right H-comodules of dimension vector d .

So if H is of finite dimensional, then H is of discrete
corepresentation type if and only if it is of finite corepresentation
type by Brauer-Thrall Theorem.
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Discrete corepresentation type

Theorem
Let H be a non-cosemisimple Hopf algebra over κ with the dual
Chevalley property and H(1) be its link-indecomposable component
containing κ1. If the coradical of H(1) is finite dimensional,

then the
following statements are equivalent:
(1) H is of discrete corepresentation type;

(2) Every vertex in Q(H) is both the start vertex of only one arrow and the
end vertex of only one arrow, that is, Q(H) is a disjoint union of basic
cycles;

(3) There is only one arrow C → κ1 in Q(H) whose end vertex is κ1 and
dimκ(C) = 1;

(4) There is only one arrow κ1→ D in Q(H) whose start vertex is κ1 and
dimκ(D) = 1.
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Discrete corepresentation type

Theorem
Let H be a non-cosemisimple Hopf algebra over κ with the dual
Chevalley property of discrete corepresentation type and H(1) be its
link-indecomposable component containing κ1. Denote
1S = {C ∈ S | κ1 + C ̸= κ1 ∧ C}. If the coradical of H(1) is
infinite-dimensional,

then one of the following three cases appears:
(1) | 1P |= 1 and 1S = {κg} for some g ∈ G(H);

(2) | 1P |= 2 and 1S = {κg, κh} for some different group-like elements g,h;

(3) | 1P |= 1 and 1S = {Ck} for some Ck ∈ S with dimκ(Ck ) = 4.
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Discrete corepresentation type

Remark
Note that in the above theorem, cases (1) and (2) imply that H(1) is
pointed which already was considered before. One of our contributions
is to show that the case (3) indeed occurs.

Example

As an algebra, H(e±1, f±1,u, v) is generated by u, v ,ei , fi for i ∈ Z,
subject to the following relations

1 = e0 + f0, eiej = ei+j , fi fj = fi+j , ei fj = fjei = 0,
eiu = (−1)iuei , fiu = (−1)iufi , eiv = (−1)ivei , fiv = (−1)ivfi ,

u2 = v2 = 0, uv = −vu,

for any i , j ∈ Z.
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Discrete corepresentation type

Example
The comultiplication, counit and the antipode are given by

∆(ei) = ei ⊗ ei + fi ⊗ f−i , ε(ei) = 1, S(ei) = e−i ,

∆(fi) = ei ⊗ fi + fi ⊗ e−i , ε(fi) = 0, S(fi) = fi ,
∆(u) = 1⊗ u + u ⊗ e1 + v ⊗ f−1, ε(u) = 0, S(u) = −vf−1 − ue−1,

∆(v) = 1⊗ v + u ⊗ f1 + v ⊗ e−1, ε(v) = 0, S(v) = −uf1 − ve1,

for any i ∈ Z.
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Discrete corepresentation type

Example
The link quiver of H(e±1, f±1,u, v) is of the following form:

C4κ1 C3C2C1
· · ·

κg

.
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Further new Hopf algebras

In above example, the coradical H0 is indeed a kind of abelian
extension.

Definition
A Hopf extension

K ι−→ H π−→ A

is called abelian if A is cocommutative and K is commutative.

Let G,F be finite groups and κG denote the dual Hopf algebra of
κG. Abelian extensions

κG ι−→ H π−→ κF

of κF by κG were classified by Masuoka(2002), and the above H
can be expressed as κG#σ,τκF .
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Further new Hopf algebras

We can consider abelian extension with F maybe infinite.

Example

Let Z2 = {g | g2 = 1}. Define group actions Z2
◁←− Z2 × Z ▷−→ Z on the

sets by
1 ◁ i = 1, g ◁ i = g, 1 ▷ i = i , g ▷ i = −i ,

for any i ∈ Z. Consider the case when σ and τ are trivial, that is,

σ(i , j) = 1

and
τ(x) = 1⊗ 1

for any i , j ∈ Z and x ∈ Z2. In such a case, let H(Z,Z2) be the abelian
extension. Then H(Z,Z2) is indeed the coradical of the Hopf algebra in
the previous Example.
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for any i ∈ Z. Consider the case when σ and τ are trivial, that is,

σ(i , j) = 1

and
τ(x) = 1⊗ 1

for any i , j ∈ Z and x ∈ Z2. In such a case, let H(Z,Z2) be the abelian
extension. Then H(Z,Z2) is indeed the coradical of the Hopf algebra in
the previous Example.
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Further new Hopf algebras

One can generalize above example further.

Example

Let G = Z2n = {g | g2n = 1} for some n ≥ 1. Define group actions
Z2n

◁←− Z2n × Z ▷−→ Z on the sets by

g i ▷ j = (−1)i j , g i ◁ j = g i ,

for any 1 ≤ i ≤ 2n, j ∈ Z. Consider the case when σ and τ are trivial,
that is, σ(i , j) = 1 and τ(x) = 1⊗ 1 for any i , j ∈ Z and x ∈ Z2n. In such
a case, let H(Z,Z2n) be the abelian extension. Then

H(Z,Z2n) ∼= κZ2n ⊕ (
⊕
j∈Z+

n−1⊕
k=0

E (k)
j ).
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Further new Hopf algebras

We get the following general observation.

Proposition
All abelian extensions

κG ι−→ H π−→ κF

with G being finite are cosemisimple.
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Thank you for your attention!
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