

Representation type of Hopf algebras with dual Chevalley property

Gongxiang Liu

School of Mathematics, Nanjing University

Outline

In this talk, we try to recall and discuss

Outline

In this talk, we try to recall and discuss

- 1 Some known results

Outline

In this talk, we try to recall and discuss

- ① Some known results
- ② Hopf algebras with (dual)Chevalley property

Outline

In this talk, we try to recall and discuss

- 1 Some known results
- 2 Hopf algebras with (dual)Chevalley property
- 3 Results and some new Hopf algebras

Outline

- 1 Some known results
- 2 Hopf algebras with Chevalley property
- 3 Some results and new Hopf algebras

Known results

- The story about classification of some algebras according to their representation type is quite long and seems not so active today.

Known results

- The story about classification of some algebras according to their representation type is quite long and seems not so active today.
- Here we only recall two results for Hopf algebras case.

Known results

- The story about classification of some algebras according to their representation type is quite long and seems not so active today.
- Here we only recall two results for Hopf algebras case.
- The classification for finite-dimensional cocommutative Hopf algebras, i.e., finite algebraic groups, of finite representation type and tame type was given by R. Farnsteiner [[Farnsteiner](#), 2000-2007] mainly.

Known results

- The story about classification of some algebras according to their representation type is quite long and seems not so active today.
- Here we only recall two results for Hopf algebras case.
- The classification for finite-dimensional cocommutative Hopf algebras, i.e., finite algebraic groups, of finite representation type and tame type was given by R. Farnsteiner [[Farnsteiner](#), 2000-2007] mainly.

From representation theoretic point of view, he proved the following result:

Known results

- The story about classification of some algebras according to their representation type is quite long and seems not so active today.
- Here we only recall two results for Hopf algebras case.
- The classification for finite-dimensional cocommutative Hopf algebras, i.e., finite algebraic groups, of finite representation type and tame type was given by R. Farnsteiner [Farnsteiner, 2000-2007] mainly.

From representation theoretic point of view, he proved the following result:

Theorem

- (1) A finite algebraic group \mathcal{G} is of finite representation type iff $H(\mathcal{G}) := \mathcal{O}(\mathcal{G})^*$ is a Nakayama algebra;
- (2) If \mathcal{G} is tame, then $H(\mathcal{G})$ is special biserial.

Known results

- For elementary (basic) Hopf algebras, the speaker and his collaborators got the following results from 2005 to 2012 , also from representation theoretic point of view.

- For elementary (basic) Hopf algebras, the speaker and his collaborators got the following results from 2005 to 2012 , also from representation theoretic point of view.

Theorem

Let H be a finite dimensional basic Hopf algebra. Then

Known results

- For elementary (basic) Hopf algebras, the speaker and his collaborators got the following results from 2005 to 2012 , also from representation theoretic point of view.

Theorem

Let H be a finite dimensional basic Hopf algebra. Then

- (1) H is of finite representation type iff H is a Nakayama algebra;*
- (2) If H is tame, then H is special biserial.*

Known results

- For elementary (basic) Hopf algebras, the speaker and his collaborators got the following results from 2005 to 2012 , also from representation theoretic point of view.

Theorem

Let H be a finite dimensional basic Hopf algebra. Then

- (1) H is of finite representation type iff H is a Nakayama algebra;*
- (2) If H is tame, then H is special biserial.*

Natural question

- Combining the results above, we can form the following question naturally:

- Combining the results above, we can form the following question naturally:

Problem 1.

Let H be a finite dimensional Hopf algebra. Do we always have

- Combining the results above, we can form the following question naturally:

Problem 1.

Let H be a finite dimensional Hopf algebra. Do we always have
(1) H is of finite representation type iff H is a Nakayama algebra?

- Combining the results above, we can form the following question naturally:

Problem 1.

Let H be a finite dimensional Hopf algebra. Do we always have

- (1) H is of finite representation type iff H is a Nakayama algebra?
- (2) If H is tame, then H is special biserial?

- Combining the results above, we can form the following question naturally:

Problem 1.

Let H be a finite dimensional Hopf algebra. Do we always have

- (1) H is of finite representation type iff H is a Nakayama algebra?
- (2) If H is tame, then H is special biserial?

- We test them through using Hopf algebras with (dual) Chevalley property.

Outline

- 1 Some known results
- 2 Hopf algebras with Chevalley property

- 3 Some results and new Hopf algebras

Definition

- Let H be a finite dimensional Hopf algebra.

Definition

- Let H be a finite dimensional Hopf algebra.

Definition

- H is called to have Chevalley property if its radical J_H is a Hopf ideal.

Definition

- Let H be a finite dimensional Hopf algebra.

Definition

- H is called to have Chevalley property if its radical J_H is a Hopf ideal.
- H is called to have dual Chevalley property if its coradical H_0 is a Hopf subalgebra.

Definition

- Let H be a finite dimensional Hopf algebra.

Definition

- H is called to have Chevalley property if its radical J_H is a Hopf ideal.
- H is called to have dual Chevalley property if its coradical H_0 is a Hopf subalgebra.
- H has Chevalley property if and only if H^* has dual Chevalley property.

Example

Example

- 1) All elementary Hopf algebras are Hopf algebras with Chevalley property.

Example

Example

- 1) All elementary Hopf algebras are Hopf algebras with Chevalley property.
- 2) All pointed Hopf algebras are Hopf algebras with dual Chevalley property.

Example

Example

- 1) All elementary Hopf algebras are Hopf algebras with Chevalley property.
- 2) All pointed Hopf algebras are Hopf algebras with dual Chevalley property.
- 3) The following Hopf algebra is one with (dual) Chevalley property.

Example

Example

- 1) All elementary Hopf algebras are Hopf algebras with Chevalley property.
- 2) All pointed Hopf algebras are Hopf algebras with dual Chevalley property.
- 3) The following Hopf algebra is one with (dual) Chevalley property.

$H_{2,K}$ is generated by c, b, x, y with relations:

- $c^2 = 1, \quad b^2 = 1, \quad x^2 = \frac{1}{2}(1 + c + b - cb), \quad cb = bc, \quad xc = bx, \quad xb = cx,$
- $y^2 = 0, \quad yc = -cy, \quad yb = -by, \quad yx = \sqrt{-1}cxy.$

Example

Example

- 1) All elementary Hopf algebras are Hopf algebras with Chevalley property.
- 2) All pointed Hopf algebras are Hopf algebras with dual Chevalley property.
- 3) The following Hopf algebra is one with (dual) Chevalley property.

$H_{2,K}$ is generated by c, b, x, y with relations:

- $c^2 = 1, \quad b^2 = 1, \quad x^2 = \frac{1}{2}(1 + c + b - cb), \quad cb = bc, \quad xc = bx, \quad xb = cx,$
- $y^2 = 0, \quad yc = -cy, \quad yb = -by, \quad yx = \sqrt{-1}cxy.$

The coalgebra and antipode are given by:

Example

Example

- 1) All elementary Hopf algebras are Hopf algebras with Chevalley property.
- 2) All pointed Hopf algebras are Hopf algebras with dual Chevalley property.
- 3) The following Hopf algebra is one with (dual) Chevalley property.

$H_{2,K}$ is generated by c, b, x, y with relations:

- $c^2 = 1, \quad b^2 = 1, \quad x^2 = \frac{1}{2}(1 + c + b - cb), \quad cb = bc, \quad xc = bx, \quad xb = cx,$
- $y^2 = 0, \quad yc = -cy, \quad yb = -by, \quad yx = \sqrt{-1}cxy.$

The coalgebra and antipode are given by:

- $\Delta(c) = c \otimes c, \quad \varepsilon(c) = 1, \quad S(c) = c,$
- $\Delta(b) = b \otimes b, \quad \varepsilon(b) = 1, \quad S(b) = b,$
- $\Delta(x) = \frac{1}{2}(x \otimes x + bx \otimes x + x \otimes cx - bx \otimes cx), \quad \varepsilon(x) = 1, \quad S(x) = x,$
- $\Delta(y) = c \otimes y + y \otimes 1, \quad \varepsilon(y) = 0, \quad S(y) = -c^{-1}y.$

Local Hopf quiver

- Let $\Gamma = (\Gamma_0, \Gamma_1)$ be a quiver where

Local Hopf quiver

- Let $\Gamma = (\Gamma_0, \Gamma_1)$ be a quiver where Γ_0 vertices, Γ_1 arrows.

Local Hopf quiver

- Let $\Gamma = (\Gamma_0, \Gamma_1)$ be a quiver where Γ_0 vertices, Γ_1 arrows.
- For $a \in \Gamma_0$,

Local Hopf quiver

- Let $\Gamma = (\Gamma_0, \Gamma_1)$ be a quiver where Γ_0 vertices, Γ_1 arrows.
- For $a \in \Gamma_0$,
$$o(a) : \text{the number of arrows with starting vertex } a$$

Local Hopf quiver

- Let $\Gamma = (\Gamma_0, \Gamma_1)$ be a quiver where Γ_0 vertices, Γ_1 arrows.
- For $a \in \Gamma_0$,

$o(a)$: the number of arrows with starting vertex a

$i(a)$: the number of arrows with ending vertex a .

Local Hopf quiver

Definition 2. A quiver $\Gamma = (\Gamma_0, \Gamma_1)$ is called a local Hopf quiver if

Local Hopf quiver

Definition 2. A quiver $\Gamma = (\Gamma_0, \Gamma_1)$ is called a local Hopf quiver if

- $o(a) = i(a)$ for $a \in \Gamma_0$ and we denote this number by n_a ;

Local Hopf quiver

Definition 2. A quiver $\Gamma = (\Gamma_0, \Gamma_1)$ is called a local Hopf quiver if

- $o(a) = i(a)$ for $a \in \Gamma_0$ and we denote this number by n_a ;
- $n_a = n_b =: n_\Gamma$ for any $a, b \in \Gamma_0$;

Local Hopf quiver

Definition 2. A quiver $\Gamma = (\Gamma_0, \Gamma_1)$ is called a local Hopf quiver if

- $o(a) = i(a)$ for $a \in \Gamma_0$ and we denote this number by n_a ;
- $n_a = n_b =: n_\Gamma$ for any $a, b \in \Gamma_0$;
- all connected components are same.

Local Hopf quiver

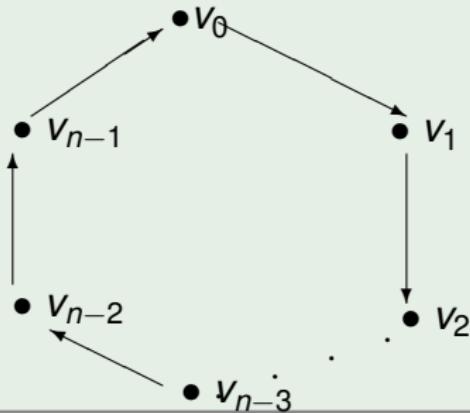
Example

For any natural number n , the **basic cycle of length n** :

Local Hopf quiver

Example

For any natural number n , the **basic cycle of length n** :



Local Hopf quiver

Theorem

Let H be a finite dimensional Hopf algebra.

- (Green-solberg) If H is elementary, then its Gabriel's quiver is a local Hopf quiver;

Theorem

Let H be a finite dimensional Hopf algebra.

- (Green-solberg) If H is elementary, then its Gabriel's quiver is a local Hopf quiver;
- (Cibils-Rosso) If H is pointed, then its dual Gabriel's quiver is a local Hopf quiver.

Theorem

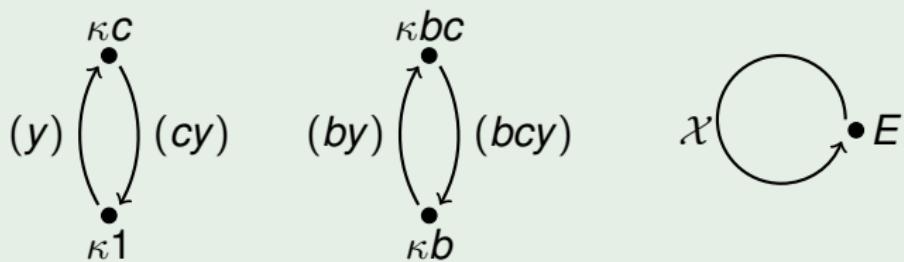
Let H be a finite dimensional Hopf algebra.

- (Green-solberg) If H is elementary, then its Gabriel's quiver is a local Hopf quiver;
- (Cibils-Rosso) If H is pointed, then its dual Gabriel's quiver is a local Hopf quiver.

Local Hopf quiver

Example

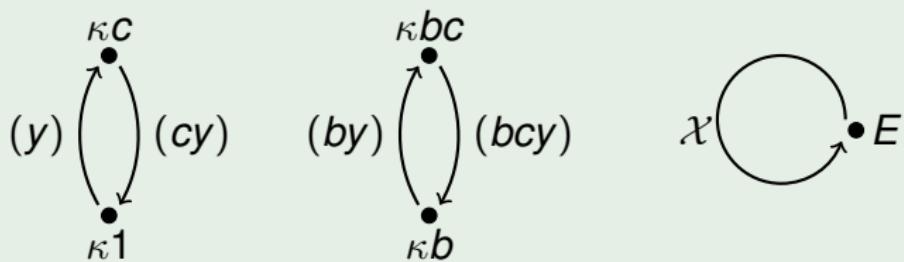
The dual Gabriel quiver of above $H_{2,k}$ is shown below:



Local Hopf quiver

Example

The dual Gabriel quiver of above $H_{2,k}$ is shown below:



$H_{2,k}$ is neither elementary nor pointed.

Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel's quiver $\Gamma(H)$ is a local Hopf quiver.

Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel's quiver $\Gamma(H)$ is a local Hopf quiver. So we have a natural number

$$n_H := n_{\Gamma(H)}.$$

Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel's quiver $\Gamma(H)$ is a local Hopf quiver. So we have a natural number

$n_H := n_{\Gamma(H)}$. The following is one of the speaker's observation.

Local Hopf quiver

Let H be an elementary Hopf algebra, so its Gabriel's quiver $\Gamma(H)$ is a local Hopf quiver. So we have a natural number

$n_H := n_{\Gamma(H)}$. The following is one of the speaker's observation.

Theorem

Let H be an elementary Hopf algebra, then

- (i) H is of *finite representation type* if and only if $n_H = 0$ or $n_H = 1$;
- (ii) If H is *tame*, then $n_H = 2$;
- (iii) If $n_H \geq 3$, then H is of *wild* type.

Outline

- 1 Some known results
- 2 Hopf algebras with Chevalley property
- 3 Some results and new Hopf algebras

Definition

Let (H, Δ, ε) be a coalgebra over κ .

- (1) A square matrix $\mathcal{G} = (g_{ij})_{r \times r}$ over H is said to be multiplicative, if for any $1 \leq i, j \leq r$, we have $\Delta(g_{ij}) = \sum_{t=1}^r g_{it} \otimes g_{tj}$ and $\varepsilon(g_{ij}) = \delta_{i,j}$, where $\delta_{i,j}$ denotes the Kronecker notation;
- (2) A multiplicative matrix \mathcal{C} is said to be basic, if its entries are linearly independent.

Definition

Let (H, Δ, ε) be a coalgebra over κ .

- (1) A square matrix $\mathcal{G} = (g_{ij})_{r \times r}$ over H is said to be multiplicative, if for any $1 \leq i, j \leq r$, we have $\Delta(g_{ij}) = \sum_{t=1}^r g_{it} \otimes g_{tj}$ and $\varepsilon(g_{ij}) = \delta_{i,j}$, where $\delta_{i,j}$ denotes the Kronecker notation;
- (2) A multiplicative matrix \mathcal{C} is said to be basic, if its entries are linearly independent.

Above definition formally implies that

Definition

Let (H, Δ, ε) be a coalgebra over κ .

- (1) A square matrix $\mathcal{G} = (g_{ij})_{r \times r}$ over H is said to be multiplicative, if for any $1 \leq i, j \leq r$, we have $\Delta(g_{ij}) = \sum_{t=1}^r g_{it} \otimes g_{tj}$ and $\varepsilon(g_{ij}) = \delta_{i,j}$, where $\delta_{i,j}$ denotes the Kronecker notation;
- (2) A multiplicative matrix \mathcal{C} is said to be basic, if its entries are linearly independent.

Above definition formally implies that

$$\Delta(\mathcal{C}) = \mathcal{C} \otimes \mathcal{C}, \varepsilon(\mathcal{C}) = E_r.$$

Definition

Let (H, Δ, ε) be a coalgebra over κ .

- (1) A square matrix $\mathcal{G} = (g_{ij})_{r \times r}$ over H is said to be multiplicative, if for any $1 \leq i, j \leq r$, we have $\Delta(g_{ij}) = \sum_{t=1}^r g_{it} \otimes g_{tj}$ and $\varepsilon(g_{ij}) = \delta_{i,j}$, where $\delta_{i,j}$ denotes the Kronecker notation;
- (2) A multiplicative matrix \mathcal{C} is said to be basic, if its entries are linearly independent.

Above definition formally implies that

$$\Delta(\mathcal{C}) = \mathcal{C} \otimes \mathcal{C}, \varepsilon(\mathcal{C}) = E_r.$$

- The set of all the simple subcoalgebras of H is denoted by \mathcal{S} , which corresponds a complete set of basic multiplicative matrices.

Definition

Let (H, Δ, ε) be a coalgebra over κ . Suppose $\mathcal{C} = (c_{ij})_{r \times r}$ and $\mathcal{D} = (d_{ij})_{s \times s}$ are basic multiplicative matrices over H .

(1) A matrix $\mathcal{X} = (x_{ij})_{r \times s}$ over H is said to be $(\mathcal{C}, \mathcal{D})$ -primitive, if

$$\Delta(x_{ij}) = \sum_{k=1}^r c_{ik} \otimes x_{kj} + \sum_{t=1}^s x_{it} \otimes d_{tj}$$

holds for any $1 \leq i, j \leq r$;

(2) A primitive matrix \mathcal{X} is said to be non-trivial, if there exists some entry of \mathcal{X} which does not belong to the coradical H_0 .

Definition

Let (H, Δ, ε) be a coalgebra over κ . Suppose $\mathcal{C} = (c_{ij})_{r \times r}$ and $\mathcal{D} = (d_{ij})_{s \times s}$ are basic multiplicative matrices over H .

(1) A matrix $\mathcal{X} = (x_{ij})_{r \times s}$ over H is said to be $(\mathcal{C}, \mathcal{D})$ -primitive, if

$$\Delta(x_{ij}) = \sum_{k=1}^r c_{ik} \otimes x_{kj} + \sum_{t=1}^s x_{it} \otimes d_{tj}$$

holds for any $1 \leq i, j \leq r$;

(2) A primitive matrix \mathcal{X} is said to be non-trivial, if there exists some entry of \mathcal{X} which does not belong to the coradical H_0 .

Above definition formally implies that

Definition

Let (H, Δ, ε) be a coalgebra over κ . Suppose $\mathcal{C} = (c_{ij})_{r \times r}$ and $\mathcal{D} = (d_{ij})_{s \times s}$ are basic multiplicative matrices over H .

(1) A matrix $\mathcal{X} = (x_{ij})_{r \times s}$ over H is said to be $(\mathcal{C}, \mathcal{D})$ -primitive, if

$$\Delta(x_{ij}) = \sum_{k=1}^r c_{ik} \otimes x_{kj} + \sum_{t=1}^s x_{it} \otimes d_{tj}$$

holds for any $1 \leq i, j \leq r$;

(2) A primitive matrix \mathcal{X} is said to be non-trivial, if there exists some entry of \mathcal{X} which does not belong to the coradical H_0 .

Above definition formally implies that

$$\Delta(\mathcal{X}) = \mathcal{C} \otimes \mathcal{X} + \mathcal{X} \otimes \mathcal{D}.$$

Multiplicative and primitive matrices

- Denote ${}^1\mathcal{S} = \{C \in \mathcal{S} \mid \kappa\mathbf{1} + C \neq \kappa\mathbf{1} \wedge C\}$. For any $C \in {}^1\mathcal{S}$, we can fix a complete family $\{\mathcal{X}_C^{(\gamma_C)}\}_{\gamma_C \in \Gamma_C}$ of non-trivial $(1, \mathcal{C})$ -primitive matrices.

Multiplicative and primitive matrices

- Denote ${}^1\mathcal{S} = \{C \in \mathcal{S} \mid \kappa \mathbf{1} + C \neq \kappa \mathbf{1} \wedge C\}$. For any $C \in {}^1\mathcal{S}$, we can fix a complete family $\{\mathcal{X}_C^{(\gamma_C)}\}_{\gamma_C \in \Gamma_C}$ of non-trivial $(1, \mathcal{C})$ -primitive matrices.
- Denote

$${}^1\mathcal{P} := \bigcup_{C \in {}^1\mathcal{S}} \{\mathcal{X}_C^{(\gamma_C)} \mid \gamma_C \in \Gamma_C\}.$$

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional nonsemisimple Hopf algebra over κ with the dual Chevalley property.

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional nonsemisimple Hopf algebra over κ with the dual Chevalley property.

(1) H is of finite corepresentation type if and only if $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 1$, where $C \in {}^1\mathcal{S}$.

Finite type and tame type

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional nonsemisimple Hopf algebra over κ with the dual Chevalley property.

- (1) H is of finite corepresentation type if and only if $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 1$, where $C \in {}^1\mathcal{S}$.
- (2) If H is of tame corepresentation type, then one of the following two cases appears:

Finite type and tame type

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional nonsemisimple Hopf algebra over κ with the dual Chevalley property.

- (1) H is of finite corepresentation type if and only if $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 1$, where $C \in {}^1\mathcal{S}$.
- (2) If H is of tame corepresentation type, then one of the following two cases appears:
 - (i) $|{}^1\mathcal{P}| = 2$ and for any $C \in {}^1\mathcal{S}$, $\dim_{\kappa}(C) = 1$;
 - (ii) $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 4$, where $C \in {}^1\mathcal{S}$.

Finite type and tame type

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional nonsemisimple Hopf algebra over κ with the dual Chevalley property.

- (1) H is of finite corepresentation type if and only if $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 1$, where $C \in {}^1\mathcal{S}$.
- (2) If H is of tame corepresentation type, then one of the following two cases appears:
 - (i) $|{}^1\mathcal{P}| = 2$ and for any $C \in {}^1\mathcal{S}$, $\dim_{\kappa}(C) = 1$;
 - (ii) $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 4$, where $C \in {}^1\mathcal{S}$.
- (3) If one of the following holds, H is of wild corepresentation type.

Finite type and tame type

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional nonsemisimple Hopf algebra over κ with the dual Chevalley property.

- (1) H is of finite corepresentation type if and only if $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 1$, where $C \in {}^1\mathcal{S}$.
- (2) If H is of tame corepresentation type, then one of the following two cases appears:
 - (i) $|{}^1\mathcal{P}| = 2$ and for any $C \in {}^1\mathcal{S}$, $\dim_{\kappa}(C) = 1$;
 - (ii) $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) = 4$, where $C \in {}^1\mathcal{S}$.
- (3) If one of the following holds, H is of wild corepresentation type.
 - (i) $|{}^1\mathcal{P}| \geq 3$;
 - (ii) $|{}^1\mathcal{P}| = 2$ and there exists some $C \in {}^1\mathcal{S}$ such that $\dim_{\kappa}(C) \geq 4$;
 - (iii) $|{}^1\mathcal{P}| = 1$ and $\dim_{\kappa}(C) \geq 9$, where $C \in {}^1\mathcal{S}$.

Finite representation type

Corollary

*Let H be a finite dimensional Hopf algebra with Chevalley property.
Then the following are equivalent:*

Corollary

Let H be a finite dimensional Hopf algebra with Chevalley property.

Then the following are equivalent:

- H is of finite representation type;
- H is a Nakayama algebra;
- $\Gamma(H)$ is a disjoint union of basic cycles.

Corollary

Let H be a finite dimensional Hopf algebra with Chevalley property.

Then the following are equivalent:

- H is of finite representation type;
- H is a Nakayama algebra;
- $\Gamma(H)$ is a disjoint union of basic cycles.

- This suggests the following conjecture:

Corollary

Let H be a finite dimensional Hopf algebra with Chevalley property.

Then the following are equivalent:

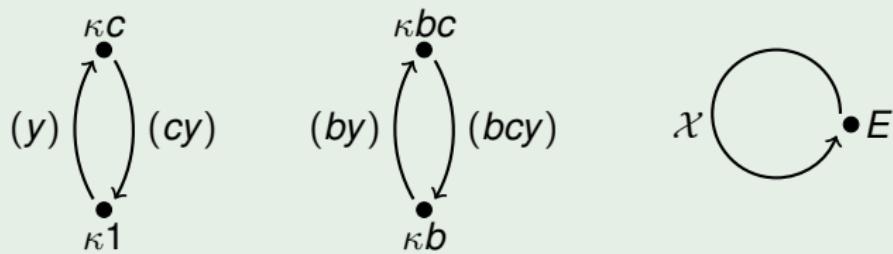
- H is of finite representation type;
- H is a Nakayama algebra;
- $\Gamma(H)$ is a disjoint union of basic cycles.

- This suggests the following conjecture:
Conjecture. Let H be a finite dimensional Hopf algebra. Then H is of finite representation type if and only if H is a Nakayama algebra.

Example

Example

- $H_{2,k}$ is of finite corepresentation type since its dual Gabriel quiver is



Tame type-Example

Example

- Let H_{32} be the Hopf algebra of dimensional 32 which is generated by z, y, t, p_1, p_2 satisfying the following relations:
 - $z^2 = 1, \quad y^2 = 1, \quad t^2 = 1, \quad zy = yz, \quad tz = zt, \quad ty = yt,$
 - $zp_1 = p_1z, \quad yp_1 = p_1y, \quad tp_1 = -p_1t, \quad zp_2 = p_2z, \quad yp_2 = p_2y, \quad tp_2 = -p_2t,$
 - $p_1^2 = \lambda(1 - z), \quad p_2^2 = -\lambda(1 - z), \quad p_1p_2 + p_2p_1 = 0.$

Tame type-Example

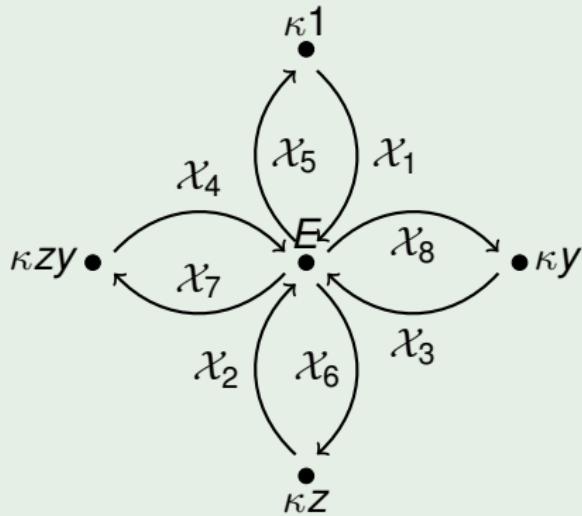
Example

- Let H_{32} be the Hopf algebra of dimensional 32 which is generated by z, y, t, p_1, p_2 satisfying the following relations:
 - $z^2 = 1, \quad y^2 = 1, \quad t^2 = 1, \quad zy = yz, \quad tz = zt, \quad ty = yt,$
 - $zp_1 = p_1z, \quad yp_1 = p_1y, \quad tp_1 = -p_1t, \quad zp_2 = p_2z, \quad yp_2 = p_2y, \quad tp_2 = -p_2t,$
 - $p_1^2 = \lambda(1-z), \quad p_2^2 = -\lambda(1-z), \quad p_1p_2 + p_2p_1 = 0.$
- The coalgebra structure and antipode are given by:
 - $\Delta(z) = z \otimes z, \quad \Delta(y) = y \otimes y, \quad \varepsilon(z) = \varepsilon(y) = 1,$
 - $\Delta(t) = \frac{1}{2} [(1+y)t \otimes t + (1-y)t \otimes zt], \quad \varepsilon(t) = 1,$
 - $S(z) = z, \quad S(y) = y, \quad S(t) = \frac{1}{2} [(1+y)t + (1-y)zt],$
 - $\Delta(p_1) = p_1 \otimes 1 + \frac{1}{2}(1+z)t \otimes p_1 + \frac{1}{2}(1-z)yt \otimes p_2,$
 - $\Delta(p_2) = p_2 \otimes 1 + \frac{1}{2}(1+z)yt \otimes p_2 + \frac{1}{2}(1-z)t \otimes p_1.$

Tame type-Example

Example

The dual Gabriel's quiver of H_{32} is shown below:



It is apparent that H is of infinite corepresentation type and in fact tame.

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional Hopf algebra over κ with Chevalley property.

Theorem

Let κ be an algebraically closed field of characteristic 0 and H a finite-dimensional Hopf algebra over κ with Chevalley property. Then $\text{gr}(H)$ is of tame type if and only if

$$\text{gr}(H) \cong (\kappa\langle x, y \rangle / I) \times H/J_H$$

for ideal I which is one of the following forms:

- (1) $I = (x^2 - y^2, yx - ax^2, xy)$ for $0 \neq a \in \kappa$;
- (2) $I = (x^2, y^2, (xy)^m - a(yx)^m)$ for $0 \neq a \in \kappa$ and $m \geq 1$;
- (3) $I = (x^n - y^n, xy, yx)$ for $n \geq 2$;
- (4) $I = (x^2, y^2, (xy)^m x - (yx)^m y)$ for $m \geq 1$.

Remark and conjecture

Remark

H_{32} is tame while it is **not** special biserial.

Remark and conjecture

Remark

H_{32} is tame while it is *not* special biserial.

Conjecture. Let H be a finite dimensional Hopf algebra with dual Chevalley property and $Q(H)$ its dual Gabriel's quiver. Then

Remark and conjecture

Remark

H_{32} is tame while it is *not* special biserial.

Conjecture. Let H be a finite dimensional Hopf algebra with dual Chevalley property and $Q(H)$ its dual Gabriel's quiver. Then

- $o(a) = i(a)$ for $a \in Q(H)_0$;

Remark and conjecture

Remark

H_{32} is tame while it is *not* special biserial.

Conjecture. Let H be a finite dimensional Hopf algebra with dual Chevalley property and $Q(H)$ its dual Gabriel's quiver. Then

- $o(a) = i(a)$ for $a \in Q(H)_0$;
- $o(1)|o(a)$ for $a \in Q(H)_0$.

Discrete corepresentation type

- In the following, we don't require H to be finite dimensional.

- In the following, we don't require H to be finite dimensional.

Definition

A coalgebra H is said to be of discrete corepresentation type, if for any finite dimension vector \underline{d} , there are only finitely many non-isomorphic indecomposable right H -comodules of dimension vector \underline{d} .

- In the following, we don't require H to be finite dimensional.

Definition

A coalgebra H is said to be of discrete corepresentation type, if for any finite dimension vector \underline{d} , there are only finitely many non-isomorphic indecomposable right H -comodules of dimension vector \underline{d} .

- So if H is of finite dimensional, then H is of discrete corepresentation type if and only if it is of finite corepresentation type by Brauer-Thrall Theorem.

Discrete corepresentation type

Theorem

Let H be a non-cosemisimple Hopf algebra over κ with the dual Chevalley property and $H_{(1)}$ be its link-indecomposable component containing $\kappa 1$. If the coradical of $H_{(1)}$ is **finite dimensional**,

Theorem

Let H be a non-cosemisimple Hopf algebra over κ with the dual Chevalley property and $H_{(1)}$ be its link-indecomposable component containing $\kappa 1$. If the coradical of $H_{(1)}$ is **finite dimensional**, then the following statements are equivalent:

Theorem

Let H be a non-cosemisimple Hopf algebra over κ with the dual Chevalley property and $H_{(1)}$ be its link-indecomposable component containing $\kappa 1$. If the coradical of $H_{(1)}$ is **finite dimensional**, then the following statements are equivalent:

- (1) H is of discrete corepresentation type;
- (2) Every vertex in $Q(H)$ is both the start vertex of only one arrow and the end vertex of only one arrow, that is, $Q(H)$ is a disjoint union of basic cycles;
- (3) There is only one arrow $C \rightarrow \kappa 1$ in $Q(H)$ whose end vertex is $\kappa 1$ and $\dim_{\kappa}(C) = 1$;
- (4) There is only one arrow $\kappa 1 \rightarrow D$ in $Q(H)$ whose start vertex is $\kappa 1$ and $\dim_{\kappa}(D) = 1$.

Theorem

Let H be a non-cosemisimple Hopf algebra over κ with the dual Chevalley property of discrete corepresentation type and $H_{(1)}$ be its link-indecomposable component containing $\kappa 1$. Denote

${}^1\mathcal{S} = \{C \in \mathcal{S} \mid \kappa 1 + C \neq \kappa 1 \wedge C\}$. If the coradical of $H_{(1)}$ is infinite-dimensional,

Theorem

Let H be a non-cosemisimple Hopf algebra over κ with the dual Chevalley property of discrete corepresentation type and $H_{(1)}$ be its link-indecomposable component containing $\kappa 1$. Denote

${}^1\mathcal{S} = \{C \in \mathcal{S} \mid \kappa 1 + C \neq \kappa 1 \wedge C\}$. If the coradical of $H_{(1)}$ is **infinite-dimensional**, then one of the following three cases appears:

Theorem

Let H be a non-cosemisimple Hopf algebra over κ with the dual Chevalley property of discrete corepresentation type and $H_{(1)}$ be its link-indecomposable component containing $\kappa 1$. Denote

${}^1\mathcal{S} = \{C \in \mathcal{S} \mid \kappa 1 + C \neq \kappa 1 \wedge C\}$. If the coradical of $H_{(1)}$ is **infinite-dimensional**, then one of the following three cases appears:

- (1) $|{}^1\mathcal{P}| = 1$ and ${}^1\mathcal{S} = \{\kappa g\}$ for some $g \in G(H)$;
- (2) $|{}^1\mathcal{P}| = 2$ and ${}^1\mathcal{S} = \{\kappa g, \kappa h\}$ for some different group-like elements g, h ;
- (3) $|{}^1\mathcal{P}| = 1$ and ${}^1\mathcal{S} = \{C_k\}$ for some $C_k \in \mathcal{S}$ with $\dim_{\kappa}(C_k) = 4$.

Discrete corepresentation type

Remark

Note that in the above theorem, cases (1) and (2) imply that $H_{(1)}$ is pointed which already was considered before. One of our contributions is to show that the case (3) indeed occurs.

Discrete corepresentation type

Remark

Note that in the above theorem, cases (1) and (2) imply that $H_{(1)}$ is pointed which already was considered before. One of our contributions is to show that the case (3) indeed occurs.

Example

As an algebra, $H(e_{\pm 1}, f_{\pm 1}, u, v)$ is generated by u, v, e_i, f_i for $i \in \mathbb{Z}$, subject to the following relations

$$\begin{aligned} 1 &= e_0 + f_0, \quad e_i e_j = e_{i+j}, \quad f_i f_j = f_{i+j}, \quad e_i f_j = f_j e_i = 0, \\ e_i u &= (-1)^i u e_i, \quad f_i u = (-1)^i u f_i, \quad e_i v = (-1)^i v e_i, \quad f_i v = (-1)^i v f_i, \\ u^2 &= v^2 = 0, \quad uv = -vu, \end{aligned}$$

for any $i, j \in \mathbb{Z}$.

Discrete corepresentation type

Example

The comultiplication, counit and the antipode are given by

$$\Delta(e_i) = e_i \otimes e_i + f_i \otimes f_{-i}, \quad \varepsilon(e_i) = 1, \quad S(e_i) = e_{-i},$$

$$\Delta(f_i) = e_i \otimes f_i + f_i \otimes e_{-i}, \quad \varepsilon(f_i) = 0, \quad S(f_i) = f_i,$$

$$\Delta(u) = 1 \otimes u + u \otimes e_1 + v \otimes f_{-1}, \quad \varepsilon(u) = 0, \quad S(u) = -vf_{-1} - ue_{-1},$$

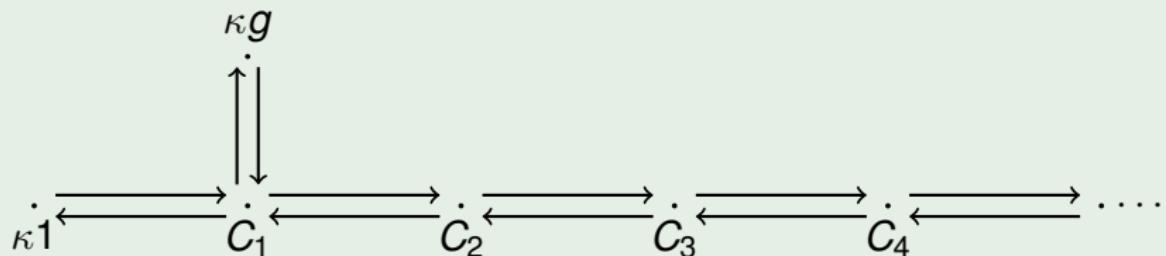
$$\Delta(v) = 1 \otimes v + u \otimes f_1 + v \otimes e_{-1}, \quad \varepsilon(v) = 0, \quad S(v) = -uf_1 - ve_1,$$

for any $i \in \mathbb{Z}$.

Discrete corepresentation type

Example

The link quiver of $H(e_{\pm 1}, f_{\pm 1}, u, v)$ is of the following form:



Further new Hopf algebras

- In above example, the coradical H_0 is indeed a kind of abelian extension.

Further new Hopf algebras

- In above example, the coradical H_0 is indeed a kind of abelian extension.

Definition

A Hopf extension

$$K \xrightarrow{\iota} H \xrightarrow{\pi} A$$

is called abelian if A is cocommutative and K is commutative.

Further new Hopf algebras

- In above example, the coradical H_0 is indeed a kind of abelian extension.

Definition

A Hopf extension

$$K \xrightarrow{\iota} H \xrightarrow{\pi} A$$

is called abelian if A is cocommutative and K is commutative.

- Let G, F be finite groups and κ^G denote the dual Hopf algebra of κG . Abelian extensions

$$\kappa^G \xrightarrow{\iota} H \xrightarrow{\pi} \kappa F$$

of κF by κ^G were classified by Masuoka(2002), and the above H can be expressed as $\kappa^G \#_{\sigma, \tau} \kappa F$.

Further new Hopf algebras

- We can consider abelian extension with F maybe **infinite**.

Further new Hopf algebras

- We can consider abelian extension with F maybe **infinite**.

Example

Let $\mathbb{Z}_2 = \{g \mid g^2 = 1\}$. Define group actions $\mathbb{Z}_2 \xleftarrow{\triangleleft} \mathbb{Z}_2 \times \mathbb{Z} \xrightarrow{\triangleright} \mathbb{Z}$ on the sets by

$$1 \triangleleft i = 1, \quad g \triangleleft i = g, \quad 1 \triangleright i = i, \quad g \triangleright i = -i,$$

for any $i \in \mathbb{Z}$. Consider the case when σ and τ are trivial, that is,

$$\sigma(i, j) = 1$$

and

$$\tau(x) = 1 \otimes 1$$

for any $i, j \in \mathbb{Z}$ and $x \in \mathbb{Z}_2$. In such a case, let $H(\mathbb{Z}, \mathbb{Z}_2)$ be the abelian extension. Then $H(\mathbb{Z}, \mathbb{Z}_2)$ is indeed the **coradical** of the Hopf algebra in the previous Example.

Further new Hopf algebras

- One can generalize above example further.

Further new Hopf algebras

- One can generalize above example further.

Example

Let $G = \mathbb{Z}_{2n} = \{g \mid g^{2n} = 1\}$ for some $n \geq 1$. Define group actions $\mathbb{Z}_{2n} \xleftarrow{\triangleleft} \mathbb{Z}_{2n} \times \mathbb{Z} \xrightarrow{\triangleright} \mathbb{Z}$ on the sets by

$$g^i \triangleright j = (-1)^i j, \quad g^i \triangleleft j = g^i,$$

for any $1 \leq i \leq 2n$, $j \in \mathbb{Z}$. Consider the case when σ and τ are trivial, that is, $\sigma(i, j) = 1$ and $\tau(x) = 1 \otimes 1$ for any $i, j \in \mathbb{Z}$ and $x \in \mathbb{Z}_{2n}$. In such a case, let $H(\mathbb{Z}, \mathbb{Z}_{2n})$ be the abelian extension. Then

$$H(\mathbb{Z}, \mathbb{Z}_{2n}) \cong \kappa \mathbb{Z}_{2n} \oplus \left(\bigoplus_{j \in \mathbb{Z}_+} \bigoplus_{k=0}^{n-1} E_j^{(k)} \right).$$

Further new Hopf algebras

- We get the following general observation.

Further new Hopf algebras

- We get the following general observation.

Proposition

All abelian extensions

$$\kappa^G \xrightarrow{\iota} H \xrightarrow{\pi} \kappa F$$

with G being finite are cosemisimple.

Thank you for your attention!